Skip to main content

Advertisement

Log in

Functional and genetic characterization of three cell lines derived from a single tumor of an Opisthorchis viverrini-associated cholangiocarcinoma patient

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Three cholangiocarcinoma (CCA) cell line—formerly named, M156, M213 and M214 have been intensively used with discrepancy of their tumor origins. They were assumed to be originated from three different donors without authentication. To verify the origins of these cell lines, the short tandem repeat (STR) analysis of the currently used cell lines, the cell stocks from the establisher and the primary tumor of a CCA patient were performed. Their phenotypic and genotypic originality were compared. The currently used 3 CCA cell lines exhibited similar STR as CCA patient ID-M213 indicating the same origin of these cells. The cell stocks from the establisher, however, revealed the same STR of M213 and M214 cells, but not M156. The misidentification of M214 and M156 is probably due to the mislabeling and cross-contamination of M213 cells during culture. These currently used cell lines were renamed as KKU-213A, -213B and -213C, for the formerly M213, M214 and M156 cells, respectively. These cell lines were established from a male with an intrahepatic mass-forming CCA stage-4B. The tumor was an adenosquamous carcinoma with the liver fluke ova granuloma in evidence. All cell lines had positive CK19 with differential CA19-9 expression. They exhibited aneuploidy karyotypes, distinct cell morphology, cell growth, cytogenetic characteristic and progressive phenotypes. KKU-213C formed a adenosquamous carcinoma, whereas KKU-213A and KKU-213B formed poorly- and well-differentiated squamous cell carcinomas in xenografted mice. mRNA microarray revealed different expression profiles among these three cell lines. The three cell lines have unique characteristics and may resemble the heterogeneity of tumor origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Banales JM, Cardinale V, Carpino G, et al. Expert consensus document: cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat Rev Gastroenterol Hepatol. 2016;13:261–80.

    PubMed  Google Scholar 

  2. Thamavit W, Pairojkul C, Tiwawech D, Shirai T, Ito N. Strong promoting effect of Opisthorchis viverrini infection on dimethylnitrosamine-initiated hamster liver. Cancer Lett. 1994;78:121–5.

    CAS  PubMed  Google Scholar 

  3. Parkin DM, Ohshima H, Srivatanakul P, Vatanasapt V. Cholangiocarcinoma: epidemiology, mechanisms of carcinogenesis and prevention. Cancer Epidemiol Biomark Prev. 1993;2:537–44.

    CAS  Google Scholar 

  4. Ohshima H, Bandaletova TY, Brouet I, et al. Increased nitrosamine and nitrate biosynthesis mediated by nitric oxide synthase induced in hamsters infected with liver fluke (Opisthorchis viverrini). Carcinogenesis. 1994;15:271–5.

    CAS  PubMed  Google Scholar 

  5. Pinlaor S, Hiraku Y, Yongvanit P, et al. iNOS-dependent DNA damage via NF-kappaB expression in hamsters infected with Opisthorchis viverrini and its suppression by the antihelminthic drug praziquantel. Int J Cancer. 2006;119:1067–72.

    CAS  PubMed  Google Scholar 

  6. Ben-Menachem T. Risk factors for cholangiocarcinoma. Eur J Gastroenterol Hepatol. 2007;19:615–7.

    PubMed  Google Scholar 

  7. Jinawath N, Chamgramol Y, Furukawa Y, et al. Comparison of gene expression profiles between Opisthorchis viverrini and non-Opisthorchis viverrini associated human intrahepatic cholangiocarcinoma. Hepatology. 2006;44:1025–38.

    CAS  PubMed  Google Scholar 

  8. Jusakul A, Cutcutache I, Yong CH, et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 2017;7:1116–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15:81–94.

    CAS  PubMed  Google Scholar 

  10. DeOliveira ML, Cunningham SC, Cameron JL, et al. Cholangiocarcinoma: 31-year experience with 564 patients at a single institution. Ann Surg. 2007;245:755–62.

    PubMed  PubMed Central  Google Scholar 

  11. Yusoff AR, Razak MM, Yoong BK, Vijeyasingam R, Siti ZM. Survival analysis of cholangiocarcinoma: a 10-year experience in Malaysia. World J Gastroenterol. 2012;18:458–65.

    PubMed  PubMed Central  Google Scholar 

  12. Luvira V, Nilprapha K, Bhudhisawasdi V, Pugkhem A, Chamadol N, Kamsa-ard S. Cholangiocarcinoma patient outcome in northeastern thailand: single-center prospective study. Asian Pacif J Cancer Prev APJCP. 2016;17:401–6.

    Google Scholar 

  13. Yonglitthipagon P, Pairojkul C, Chamgramol Y, Mulvenna J, Sripa B. Up-regulation of annexin A2 in cholangiocarcinoma caused by Opisthorchis viverrini and its implication as a prognostic marker. Int J Parasitol. 2010;40:1203–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hahnvajanawong C, Ketnimit S, Pattanapanyasat K, et al. Involvement of p53 and nuclear factor-kappaB signaling pathway for the induction of G1-phase cell cycle arrest of cholangiocarcinoma cell lines by isomorellin. Biol Pharm Bull. 2012;35:1914–25.

    CAS  PubMed  Google Scholar 

  15. Hunsawong T, Singsuksawat E, In-chon N, et al. Estrogen is increased in male cholangiocarcinoma patients' serum and stimulates invasion in cholangiocarcinoma cell lines in vitro. J Cancer Res Clin Oncol. 2012;138:1311–20.

    CAS  PubMed  Google Scholar 

  16. Tepsiri N, Chaturat L, Sripa B, et al. Drug sensitivity and drug resistance profiles of human intrahepatic cholangiocarcinoma cell lines. World J Gastroenterol. 2005;11:2748–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Namwat N, Amimanan P, Loilome W, et al. Characterization of 5-fluorouracil-resistant cholangiocarcinoma cell lines. Chemotherapy. 2008;54:343–51.

    CAS  PubMed  Google Scholar 

  18. Barr RJ, Hancock DE. Adenosquamous carcinoma of the liver. Gastroenterology. 1975;69:1326–30.

    CAS  PubMed  Google Scholar 

  19. Nakanuma Y, Curado M, Franceschi S, Gore G, Paradis V, Sripa B. The International Agency for Research on Cancer, editors. Intrahepatic cholangiocarcioma. In: Bosman F, Carneiro F, Hruban R, Theise N, eds. WHO classification of tumours of the digestive system. Lyon IARC Press, 2010; 217–24.

  20. Sripa B, Leungwattanawanit S, Nitta T, et al. Establishment and characterization of an opisthorchiasis-associated cholangiocarcinoma cell line (KKU-100). World J Gastroenterol. 2005;11:3392–7.

    PubMed  PubMed Central  Google Scholar 

  21. Silsirivanit A, Araki N, Wongkham C, et al. A novel serum carbohydrate marker on mucin 5AC: values for diagnostic and prognostic indicators for cholangiocarcinoma. Cancer. 2011;117:3393–403.

    CAS  PubMed  Google Scholar 

  22. An International System for Human Cytogenetic Nomenclature. Basel, Swizterland: Karger Medical and Scientific Publishers, 2013

  23. Phoomak C, Vaeteewoottacharn K, Sawanyawisuth K, et al. Mechanistic insights of O-GlcNAcylation that promote progression of cholangiocarcinoma cells via nuclear translocation of NF-kappaB. Scientific reports. 2016;6:27853.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Frankowski H, Gu YH, Heo JH, Milner R, Del Zoppo GJ. Use of gel zymography to examine matrix metalloproteinase (gelatinase) expression in brain tissue or in primary glial cultures. Methods Mol Biol. 2012;814:221–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vaeteewoottacharn K, Kariya R, Dana P, et al. Inhibition of carbonic anhydrase potentiates bevacizumab treatment in cholangiocarcinoma. Tumour Biol. 2016;37:9023–35.

    CAS  PubMed  Google Scholar 

  26. Eijssen LM, Jaillard M, Adriaens ME, et al. User-friendly solutions for microarray quality control and pre-processing on ArrayAnalysis.org. Nucleic acids Res. 2013; 41:W71–6.

  27. Eijssen LM, Goelela VS, Kelder T, Adriaens ME, Evelo CT, Radonjic M. A user-friendly workflow for analysis of Illumina gene expression bead array data available at the arrayanalysis.org portal. BMC Genomics. 2015;16:482.

  28. Saldanha AJ. Java Treeview–extensible visualization of microarray data. Bioinformatics. 2004;20:3246–8.

    CAS  PubMed  Google Scholar 

  29. Suo Z, Holm R, Nesland JM. Squamous cell carcinomas. An immunohistochemical study of cytokeratins and involucrin in primary and metastatic tumours. Histopathology. 1993;23:45–54.

  30. Masters JR. False cell lines: the problem and a solution. Cytotechnology. 2002;39:69–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Markovic O, Markovic N. Cell cross-contamination in cell cultures: the silent and neglected danger vitro cellular and developmental biology. Animal. 1998;34:1–8.

    CAS  Google Scholar 

  32. MacLeod RA, Dirks WG, Matsuo Y, Kaufmann M, Milch H, Drexler HG. Widespread intraspecies cross-contamination of human tumor cell lines arising at source. Int J Cancer. 1999;83:555–63.

    CAS  PubMed  Google Scholar 

  33. Azari S, Ahmadi N, Tehrani MJ, Shokri F. Profiling and authentication of human cell lines using short tandem repeat (STR) loci: report from the National Cell Bank of Iran. Biologicals. 2007;35:195–202.

    CAS  PubMed  Google Scholar 

  34. Lacroix M. Persistent use of "false" cell lines. Int J Cancer. 2008;122:1–4.

    CAS  PubMed  Google Scholar 

  35. Horbach S, Halffman W. The ghosts of HeLa: How cell line misidentification contaminates the scientific literature. PLoS ONE. 2017;12:e0186281.

    PubMed  PubMed Central  Google Scholar 

  36. Masters JR. HeLa cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer. 2002;2:315–9.

    CAS  PubMed  Google Scholar 

  37. Petljak M, Alexandrov LB, Brammeld JS, et al. Characterizing mutational signatures in human cancer cell lines reveals episodic APOBEC mutagenesis. Cell. 2019;176(1282–94):e20.

    Google Scholar 

  38. Ono I, Ishiwata I, Tashiro A, et al. Establishment and characterization of two human mixed mesodermal tumor cell lines from the same patient. J Natl Cancer Inst. 1984;72:1241–52.

    CAS  PubMed  Google Scholar 

  39. Navone NM, Olive M, Ozen M, et al. Establishment of two human prostate cancer cell lines derived from a single bone metastasis. Clin Cancer Res. 1997;3:2493–500.

    CAS  PubMed  Google Scholar 

  40. Enjoji M, Sakai H, Nawata H, Kajiyama K, Tsuneyoshi M. Sarcomatous and adenocarcinoma cell lines from the same nodule of cholangiocarcinoma vitro cellular and developmental biology. Animal. 1997;33:681–3.

    CAS  Google Scholar 

  41. Nicholson JM, Cimini D. Cancer karyotypes: survival of the fittest. Front Oncol. 2013;3:148.

    PubMed  PubMed Central  Google Scholar 

  42. Ben-David U, Siranosian B, Ha G, et al. Genetic and transcriptional evolution alters cancer cell line drug response. Nature. 2018;560:325–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rattanasinganchan P, Leelawat K, Treepongkaruna SA, et al. Establishment and characterization of a cholangiocarcinoma cell line (RMCCA-1) from a Thai patient. World J Gastroenterol. 2006;12:6500–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma S, Hu L, Huang XH, et al. Establishment and characterization of a human cholangiocarcinoma cell line. Oncol Rep. 2007;18:1195–200.

    PubMed  Google Scholar 

  45. Cavalloni G, Peraldo-Neia C, Varamo C, et al. Establishment and characterization of a human intrahepatic cholangiocarcinoma cell line derived from an Italian patient. Tumour Biol. 2016;37:4041–52.

    CAS  PubMed  Google Scholar 

  46. Saensa-Ard S, Leuangwattanawanit S, Senggunprai L, et al. Establishment of cholangiocarcinoma cell lines from patients in the endemic area of liver fluke infection in Thailand. Tumour Biol. 2017;39:1010428317725925.

    PubMed  Google Scholar 

  47. Dirks WG, Faehnrich S, Estella IA, Drexler HG. Short tandem repeat DNA typing provides an international reference standard for authentication of human cell lines. Altex. 2005;22:103–9.

    PubMed  Google Scholar 

  48. Yoshino K, Iimura E, Saijo K, et al. Essential role for gene profiling analysis in the authentication of human cell lines. Hum Cell. 2006;19:43–8.

    PubMed  Google Scholar 

  49. Almeida JL, Cole KD, Plant AL. Standards for cell line authentication and beyond. PLoS Biol. 2016;14:e1002476.

    PubMed  PubMed Central  Google Scholar 

  50. Sirisinha S, Tengchaisri T, Boonpucknavig S, Prempracha N, Ratanarapee S, Pausawasdi A. Establishment and characterization of a cholangiocarcinoma cell line from a Thai patient with intrahepatic bile duct cancer. Asian Pac J Allergy Immunol. 1991;9:153–7.

    CAS  PubMed  Google Scholar 

  51. Vaeteewoottacharn K, Pairojkul C, Kariya R, et al. Establishment of highly transplantable cholangiocarcinoma cell lines from a patient-derived xenograft mouse model. Cells. 2019;8:496–510.

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was co-supported by research grants from the Khon Kaen University (I6201-02) and the Thailand Research Fund (DBG5980004). The authors would like to thank D. Jefferson (New England Medical Center, Tufts University) for the H69 cell line and Prof. James A. Will for editing this manuscript via the Faculty of Medicine Publication Clinic, Khon Kaen University. We would also express our sincere thanks to the reviewers and editor of Human Cell for their critical advices through the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seiji Okada or Yaovalux Chamgramol.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 6272 kb)

Supplementary file2 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sripa, B., Seubwai, W., Vaeteewoottacharn, K. et al. Functional and genetic characterization of three cell lines derived from a single tumor of an Opisthorchis viverrini-associated cholangiocarcinoma patient. Human Cell 33, 695–708 (2020). https://doi.org/10.1007/s13577-020-00334-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00334-w

Keywords

Navigation