Skip to main content

Advertisement

Log in

Increased in vitro migration of human umbilical cord mesenchymal stem cells toward acellular foreskin treated with bacterial derivatives of monophosphoryl lipid A or supernatant of Lactobacillus acidophilus

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Migration and homing are known as critical steps toward regeneration of damaged tissues via cell therapies. Among various cellular sources of stem cells, the umbilical cord has been thus recognized as an interesting one endowed with high benefits. Accordingly, the main objective of the present study was to determine whether monophosphoryl lipid A (MPLA) or supernatant of Lactobacillus acidophilus (SLA) could increase migration of human umbilical cord mesenchymal stem cells (hUMSCs) toward acellular foreskin or not. In this study, the hUMSCs were isolated and cultured through acellular MPLA- or SLA-treated foreskin. Expression of some migration genes (i.e., VCAM-1, MMP-2, VLA-4, CXCR-4, and VEGF) was also investigated using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Moreover; vimentin, cytokeratin 5 (CK5), and matrix metalloproteinases-2 (MMP-2) were detected via immunohistochemistry (IHC) analysis. The hUMSCs in the presence of MPLA- or SLA-treated foreskin showed more tissue tropism compared with those in the control group. Besides, the scanning electron microscopy (SEM) results established that the hUMSCs had more migratory activity in the presence of MPLA- or SLA-treated foreskin than the untreated one. The IHC analysis results correspondingly indicated that expression of vimentin, CK5, and MMP-2 proteins had augmented in both treatments compared with those in the control group. It was concluded that MPLA had revealed more prominent results than SLA, even though both treatments could be regarded as inducing factors in migration. Ultimately, it was suggested to introduce the use of MPLA and probiotic components as a promising approach to improve therapies in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dong F, Caplan AI. Cell transplantation as an initiator of endogenous stem cell-based tissue repair. Curr Opin Organ Transpl. 2012;17(6):670–4.

    CAS  Google Scholar 

  2. Yun S, Shin T-H, Lee J-H, Cho MH, Kim I-S, Kim J-W, et al. Design of magnetically labeled cells (mag-cells) for in vivo control of stem cell migration and differentiation. Nano Lett. 2018;18(2):838–45.

    CAS  PubMed  Google Scholar 

  3. Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, et al. Systemic delivery of bone marrow–derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation. 2003;108(7):863–8.

    PubMed  Google Scholar 

  4. Cheng Z, Ou L, Zhou X, Li F, Jia X, Zhang Y, et al. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance. Mol Ther. 2008;16(3):571–9.

    CAS  PubMed  Google Scholar 

  5. Purcell BP, Elser JA, Mu A, Margulies KB, Burdick JA. Synergistic effects of SDF-1α chemokine and hyaluronic acid release from degradable hydrogels on directing bone marrow derived cell homing to the myocardium. Biomaterials. 2012;33(31):7849–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartold P, Gronthos S, Haynes D, Ivanovski S. Mesenchymal stem cells and biologic factors leading to bone formation. J Clin Periodontol. 2019;46(21):12–32.

    PubMed  Google Scholar 

  7. Kang J, Fan W, Deng Q, He H, Huang F. Stem cells from the apical papilla: a promising source for stem cell-based therapy. BioMed Res Int. 2019;5:1–8. https://doi.org/10.1155/2019/6104738.

    Article  CAS  Google Scholar 

  8. Augello A, Kurth TB, De Bari C. Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches. Eur Cell Mater. 2010;20(121):e33.

    Google Scholar 

  9. Azzopardi JI, Blundell R. Umbilical cord stem cells. Stem Cell Discov. 2018;8(01):1.

    Google Scholar 

  10. Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol. 2000;109(1):235–42.

    CAS  PubMed  Google Scholar 

  11. Percer B. Umbilical cord blood banking: helping parents make informed choices. Nurs Women Health. 2009;13(3):216–23.

    Google Scholar 

  12. Rogers I, Casper RF. Umbilical cord blood stem cells. Best Pract Res Clin Obstet Gynaecol. 2004;18(6):893–908.

    PubMed  Google Scholar 

  13. Gonzalez-Ryan L, Van Syckle K, Coyne KD, Glover N. Umbilical cord blood banking: procedural ad ethical concerns for this new birth option. Pediat Nurs. 2000;26(1):105.

    CAS  Google Scholar 

  14. Ravi M, Paramesh V, Kaviya S, Anuradha E, Solomon FP. 3D cell culture systems: advantages and applications. J Cell Physiol. 2015;230(1):16–26.

    CAS  PubMed  Google Scholar 

  15. Zhou P, Liu Z, Li X, Zhang B, Wang X, Lan J, et al. Migration ability and Toll-like receptor expression of human mesenchymal stem cells improves significantly after three-dimensional culture. Biochem Biophys Res Commun. 2017;491(2):323–8.

    CAS  PubMed  Google Scholar 

  16. Atala A. Regenerative medicine strategies. J Pediatr Surg. 2012;47(1):17–28.

    PubMed  Google Scholar 

  17. Sohni A, Verfaillie CM. Mesenchymal stem cells migration homing and tracking. Stem Cells Int. 2013. https://doi.org/10.1155/2013/130763.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ponte AL, Marais E, Gallay N, Langonné A, Delorme B, Hérault O, et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells. 2007;25(7):1737–45.

    CAS  PubMed  Google Scholar 

  19. Romero CD, Varma TK, Hobbs JB, Reyes A, Driver B, Sherwood ER. The Toll-like receptor 4 agonist monophosphoryl lipid a augments innate host resistance to systemic bacterial infection. Infect Immun. 2011;79(9):3576–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Myers KR, Truchot A, Ward J, Hudson Y, Ulrich J. A critical determinant of lipid A endotoxic activity. Amsterdam: Elsevier Science; 1990. p. 145–56.

    Google Scholar 

  21. Salkowski CA, Detore GR, Vogel SN. Lipopolysaccharide and monophosphoryl lipid A differentially regulate interleukin-12, gamma interferon, and interleukin-10 mRNA production in murine macrophages. Infect Immun. 1997;65(8):3239–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ulrich J, Masihi K, Lange W. Mechanisms of nonspecific resistance to microbial infections induced by trehalose dimycolate (TDM) and monophosphoryl lipid A (MPL). Adv Biosci. 1988;68:167–78.

    Google Scholar 

  23. Ganguli K, Walker WA. Probiotics in the prevention of necrotizing enterocolitis. J Clin Gastroenterol. 2011;45:S133–8.

    PubMed  Google Scholar 

  24. Halper J, Leshin L, Lewis S, Li W. Wound healing and angiogenic properties of supernatants from Lactobacillus cultures. Exp Biol Med. 2003;228(11):1329–37.

    CAS  Google Scholar 

  25. Dehkordi MB, Madjd Z, Chaleshtori MH, Meshkani R, Nikfarjam L, Kajbafzadeh A-M. A simple, rapid, and efficient method for isolating mesenchymal stem cells from the entire umbilical cord. Cell Transplant. 2016;25(7):1287–97.

    PubMed  Google Scholar 

  26. Saberian M, Shahidi Delshad E, Naji T, Samadikuchaksaraei A. Comparing the effect of Lactobacillus acidophilus and MRS medium on mesenchymal stem cells proliferation. J Payavard Salamat. 2015;9(3):276–87.

    Google Scholar 

  27. Ivaska J, Pallari H-M, Nevo J, Eriksson JE. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp Cell Res. 2007;313(10):2050–62. https://doi.org/10.1016/j.yexcr.2007.03.040.

    Article  CAS  PubMed  Google Scholar 

  28. Palmieri C, Story M, Lean F, Akter S, Grieco V, De Marzo AM. Diagnostic utility of cytokeratin-5 for the identification of proliferative inflammatory atrophy in the canine prostate. J Comp Pathol. 2018;158:1–5.

    CAS  PubMed  Google Scholar 

  29. Hingorani DV, Lippert CN, Crisp JL, Savariar EN, Hasselmann JPC, Kuo C, et al. Impact of MMP-2 and MMP-9 activation on wound healing, tumor growth and RACPP cleavage. biorxiv. 2018. https://doi.org/10.1101/327791.

    Article  Google Scholar 

  30. Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells. 2006;24(5):1254–64.

    CAS  PubMed  Google Scholar 

  31. Janowska-Wieczorek A, Marquez LA, Dobrowsky A, Ratajczak MZ, Cabuhat ML. Differential MMP and TIMP production by human marrow and peripheral blood CD34 + cells in response to chemokines. Exp Hematol. 2000;28(11):1274–85.

    CAS  PubMed  Google Scholar 

  32. Andreas K, Sittinger M, Ringe J. Toward in situ tissue engineering: chemokine-guided stem cell recruitment. Trends Biotechnol. 2014;32(9):483–92.

    CAS  PubMed  Google Scholar 

  33. Rüster B, Göttig S, Ludwig RJ, Bistrian R, Müller S, Seifried E, et al. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood. 2006;108(12):3938–44.

    PubMed  Google Scholar 

  34. Shojaeian A, Mehri-Ghahfarrokhi A, Banitalebi-Dehkordi M. Migration gene expression of human umbilical cord mesenchymal stem cells: a comparison between monophosphoryl lipid A and supernatant of Lactobacillus acidophilus. Int J Mol Cell Med. 2019;8(2).

  35. Preidis GA, Saulnier DM, Blutt SE, Mistretta T-A, Riehle KP, Major AM, et al. Probiotics stimulate enterocyte migration and microbial diversity in the neonatal mouse intestine. FASEB J. 2012;26(5):1960–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kuai R, Sun X, Yuan W, Ochyl LJ, Xu Y, Najafabadi AH, et al. Dual TLR agonist nanodiscs as a strong adjuvant system for vaccines and immunotherapy. J Control Release. 2018;282:131–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ruchaud-Sparagano MH, Mills R, Scott J, Simpson AJ. MPLA inhibits release of cytotoxic mediators from human neutrophils while preserving efficient bacterial killing. Immunol Cell Biol. 2014;92(9):799–809.

    CAS  PubMed  Google Scholar 

  38. Hu X, Liu R, Zhu N. Enhancement of humoral and cellular immune responses by monophosphoryl lipid A (MPLA) as an adjuvant to the rabies vaccine in BALB/c mice. Immunobiology. 2013;218(12):1524–8. https://doi.org/10.1016/j.imbio.2013.05.006.

    Article  CAS  PubMed  Google Scholar 

  39. Kang SK, Shin IS, Ko MS, Jo JY, Ra JC. Journey of mesenchymal stem cells for homing: strategies to enhance efficacy and safety of stem cell therapy. Stem Cells Int. 2012. https://doi.org/10.1155/2012/342968.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fu X, Han B, Cai S, Lei Y, Sun T, Sheng Z. Migration of bone marrow-derived mesenchymal stem cells induced by tumor necrosis factor-α and its possible role in wound healing. Wound Repair Regenerat. 2009;17(2):185–91.

    Google Scholar 

  41. Chen M-S, Lin C-Y, Chiu Y-H, Chen C-P, Tsai P-J, Wang H-S. IL-1β-induced matrix metalloprotease-1 promotes mesenchymal stem cell migration via PAR1 and G-protein-coupled signaling pathway. Stem Cells Int. 2018. https://doi.org/10.1155/2018/3524759.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li Y, Yu X, Lin S, Li X, Zhang S, Song Y-H. Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells. Biochem Biophys Res Commun. 2007;356(3):780–4.

    CAS  PubMed  Google Scholar 

  43. Shi M, Li J, Liao L, Chen B, Li B, Chen L, et al. Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica. 2007;92(7):897–904.

    PubMed  Google Scholar 

  44. Murphy CM, Matsiko A, Haugh MG, Gleeson JP, O’Brien FJ. Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen–glycosaminoglycan scaffolds. J Mech Behav Biomed Mater. 2012;11:53–62.

    CAS  PubMed  Google Scholar 

  45. Nickel W. Unconventional secretion: an extracellular trap for export of fibroblast growth factor 2. J Cell Sci. 2007;120(14):2295–9.

    CAS  PubMed  Google Scholar 

  46. Mullen LM, Best SM, Brooks RA, Ghose S, Gwynne JH, Wardale J, et al. Binding and release characteristics of insulin-like growth factor-1 from a collagen–glycosaminoglycan scaffold. Tissue Eng Part C: Methods. 2010;16(6):1439–48.

    CAS  Google Scholar 

  47. Chavez-Munoz C, Nguyen KT, Xu W, Hong S-J, Mustoe TA, Galiano RD. Transdifferentiation of adipose-derived stem cells into keratinocyte-like cells: engineering a stratified epidermis. PLoS One. 2013;8(12):e80587. https://doi.org/10.1371/journal.pone.0080587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Toai TC, Thao HD, Gargiulo C, Thao NP, Thuy TTT, Tuan HM, et al. In vitro culture of Keratinocytes from human umbilical cord blood mesenchymal stem cells: the Saigonese culture. Cell Tissue Bank. 2011;12(2):125–33.

    Google Scholar 

  49. dos Santos JF, Borçari NR, da Silva Araújo M, Nunes VA. Mesenchymal stem cells differentiate into keratinocytes and express epidermal kallikreins: Towards an in vitro model of human epidermis. J Cell Biochem. 2019;120(8):13141–13155.

    PubMed  Google Scholar 

  50. Secunda R, Vennila R, Mohanashankar A, Rajasundari M, Jeswanth S, Surendran R. Isolation, expansion and characterisation of mesenchymal stem cells from human bone marrow, adipose tissue, umbilical cord blood and matrix: a comparative study. Cytotechnology. 2015;67(5):793–807.

    CAS  PubMed  Google Scholar 

  51. Luo X, Gupta K, Ananthanarayanan A, Wang Z, Xia L, Li A, et al. Directed differentiation of adult liver derived mesenchymal like stem cells into functional hepatocytes. Sci Rep. 2018;8(1):2818.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere thanks to the staffs of Cellular and Molecular Research Center of Basic Health Sciences Institute of Shahrekord University of Medical Sciences for their cooperation. This research project was extracted from a Ph.D. thesis and was supported by a deputy of research and technology of Shahrekord University of Medical Sciences (SKUMS) [Grant Number: 2757].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Banitalebi-Dehkordi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All experiments were approved by the Ethics and Clinical Studies Research Committee of SKUMS according to Helsinki Declaration (IR.SKUMS.REC.1397.80).

Informed consent

Informed consents were obtained from all mothers before surgery.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaeian, A., Mehri-Ghahfarrokhi, A. & Banitalebi-Dehkordi, M. Increased in vitro migration of human umbilical cord mesenchymal stem cells toward acellular foreskin treated with bacterial derivatives of monophosphoryl lipid A or supernatant of Lactobacillus acidophilus. Human Cell 33, 10–22 (2020). https://doi.org/10.1007/s13577-019-00308-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-019-00308-7

Keywords

Navigation