Human Cell

, Volume 31, Issue 2, pp 149–153 | Cite as

Clinical significance of hWAPL polymorphisms in the risk of cervical carcinogenesis

  • Osamu Nunobiki
  • Daisuke Sano
  • Sakae Hata
  • Toshitada Ogasawara
  • Masatsugu Ueda
Research Article


To investigate the clinical significance of human wings apart-like (hWAPL) genetic polymorphisms in cervical carcinogenesis. hWAPL polymorphisms and human papillomavirus (HPV) types were examined in 175 cervical smears of exfoliated cervical cell samples using a real-time polymerase chain reaction system. A significant difference was detected in the frequency of the CC genotype between the HPV(+) low-grade squamous intraepithelial lesion (LSIL) and high-grade squamous intraepithelial lesion (HSIL) groups [Odds ratio 0.21, 95% confidence interval (CI) 0.0723–0.61; P = 0.0029]. A significant difference was noted in the frequency of the CC genotype between the high-risk HPV-positive LSIL and HSIL groups (odds ratio 0.2955, 95% CI 0.0893–0.9771; P = 0.0414). The CC genotype of hWAPL gene promoter polymorphism may be associated with cervical carcinogenesis.


hWAPL Polymorphism SIL Cervical carcinogenesis 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Hausen HZ. Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst. 2000;92:690–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Ueda M, Toji E, Nunobiki O, Izuma S, Okamoto Y, Torii K, Noda S. Germline polymorphism of cancer susceptibility genes in gynecologic cancer. Hum Cell. 2008;21:95–104.CrossRefPubMedGoogle Scholar
  3. 3.
    Nunobiki O, Ueda M, Yamamoto M, Toji E, Sato N, Izuma S, Okamoto Y, Torii K, Noda S. MDM2 SNP 309 human papillomavirus infection in cervical carcinogenesis. Gynecol Oncol. 2010;118:258–61.CrossRefPubMedGoogle Scholar
  4. 4.
    Nunobiki O, Ueda M, Akise H, Izuma S, Torii K, Okamoto Y, Tanaka I, Noda S, Akashi K, Higashida T. GSTM1, GSTT1, and NQO1 polymorphisms in cervical carcinogenesis. Hum Cell. 2015;28:109–13.CrossRefPubMedGoogle Scholar
  5. 5.
    Nunobiki O, Sano D, Akashi K, Higashida T, Ogasawara T, Akise H, Izuma S, Torii K, Okamoto Y, Tanaka I, Ueda M. ALDH2 polymorphism for the risk of cervical carcinogenesis. Hum Cell. 2016;29:91–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Verni F, Gandhi R, Goldberg ML, Gatti M. Genetic and molecular analysis of wings apart-like (WAPL), a gene controlling heterochromatin organization in Drosophila melanogaster. Genetics. 2000;154:1693–710.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Dobie KW, Kennedy CD, Velasco VM, McGrath TL, Weko J, Patterson RW, Karpen GH. Identification of chromosome inheritance modifiers in Drosophila melanogaster. Genetics. 2001;157:1623–37.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Gandhi R, Gillespie PJ, Hirano T. Human WAPL is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr Biol. 2006;16:2406–17.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hashida T, Yasumoto S. Induction of chromosome abnormalities in mouse and human epidermal keratinocytes by the human papillomavirus type 16 E7 oncogene. J Gen Virol. 1991;72:1569–77.CrossRefPubMedGoogle Scholar
  10. 10.
    White AE, Livanos EM, Tlsty TD. Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev. 1994;8:666–77.CrossRefPubMedGoogle Scholar
  11. 11.
    Oikawa K, Ohbayashi T, Kiyono T, Nishi H, Isaka K, Umezawa A, Kuroda M, Mukai K. Expression of a novel human gene, human wings apart-like (hWAPL), is associated with cervical carcinogenesis and tumor progression. Cancer Res. 2004;64:3545–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Kuroda M, Oikawa K, Yoshida K, Takeuchi A, Takeuchi M, Usui M, Umezawa A, Mukai K. Effects of 3-methylcholanthrene on the transcriptional activity and mRNA accumulation of the oncogene hWAPL. Cancer Lett. 2005;221:21–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Kuroda M, Kiyono T, Oikawa K, Yoshida K, Mukai K. The human papillomavirus E6 and E7 inducible oncogene, hWAPL, exhibits potential as a therapeutic target. Br J Cancer. 2005;92:290–3.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ohbayashi T, Oikawa K, Yamada K, Nishida-Umehara C, Matsuda Y, Satoh H, Mukai H, Mukai K, Kuroda M. Unscheduled overexpression of human WAPL promotes chromosomal instability. Biochem Biophys Res Commun. 2007;356:699–704.CrossRefPubMedGoogle Scholar
  15. 15.
    Oikawa K, Akiyoshi A, Tanaka M, Takanashi M, Nishi H, Isaka K, Kiseki H, Idei T, Tsukahara Y, Hashimura N, Mukai K, Kuroda M. Expression of various types of alternatively spliced WAPL transcripts in human cervical epithelia. Gene. 2008;423:57–62.CrossRefPubMedGoogle Scholar
  16. 16.
    Nagano H, Yoshikawa H, Kawana T, Yokota H, Taketani Y, Igarashi H, Yoshikura H, Iwamoto A. Association of multiple human papillomavirus types with vulvar neoplasias. J Obstet Gynecol Res. 1996;22:1–8.CrossRefGoogle Scholar
  17. 17.
    Yoshikawa H, Kawana T, Kitagawa K, Mizuno M, Yoshikura H, Iwamoto A. Detection and typing of multiple genital human papillomaviruses by DNA amplification with consensus primers. Jpn J Cancer Res. 1991;82:524–31.CrossRefPubMedGoogle Scholar
  18. 18.
    Milde-Langosch K, Riethdorf S, Loning T. Association of human papillomavirus infection with carcinoma of the cervix uteri and its precursor lesions: theoretical and practical implications. Virchows Arch. 2000;437:227–33.CrossRefPubMedGoogle Scholar
  19. 19.
    Schiffman MH, Brinton LA. The epidemiology of cervical carcinogenesis. Cancer. 1995;76:1888–901.CrossRefPubMedGoogle Scholar
  20. 20.
    Acs G, Zhang PJ, McGrath CM, Acs P, McBroom J, Mohyeldin A, Liu S, Lu H, Verma A. Hypoxia-inducible erythropoietin signaling in squamous dysplasia and squamous cell carcinoma of the uterine cervix and its potential role in cervical carcinogenesis and tumor progression. Am J Pathol. 2003;162:1789–806.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhai Y, Hotary KB, Nan B, Bosch FX, Muñoz N, Weiss SJ, Cho KR. Expression of membrane type 1 matrix metalloproteinase is associated with cervical carcinoma progression and invasion. Cancer Res. 2005;65:6543–50.CrossRefPubMedGoogle Scholar
  22. 22.
    Uren A, Fallen S, Yuan H, Usubütün A, Küçükali T, Schlegel R, Toretsky JA. Activation of the canonical Wnt pathway during genital keratinocyte transformation: a model for cervical cancer progression. Cancer Res. 2005;65:6199–206.CrossRefPubMedGoogle Scholar
  23. 23.
    Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell. 1993;75:495–505.CrossRefPubMedGoogle Scholar
  24. 24.
    Li L, Jiao GL, Qin S, Xiao Q. Relationship between hWAPL polymorphisms and cervical cancer susceptibility. Int J Clin Exp Pathol. 2015;8:13777–82.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Lu X, Cui J, Fu M, Wang W. Human wings apart-like gene is specifically overexpressed in cervical cancer. Oncol Lett. 2016;12:171–6.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Japan Human Cell Society and Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical TechnologyKobe Tokiwa UniversityKobeJapan
  2. 2.Department of Obstetrics and GynecologyOkubo HospitalAkashiJapan
  3. 3.Cytopathology and GynecologyOsaka Center for Cancer and Cardiovascular Disease PreventionOsakaJapan

Personalised recommendations