Skip to main content

Advertisement

Log in

Focal adhesion kinase maintains, but not increases the adhesion of dental pulp cells

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Focal adhesion kinase (FAK) functions as a key enzyme in the integrin-mediated adhesion-signalling pathway. Here, we aimed to investigate the effects of FAK on adhesion of human dental pulp (HDP) cells. We transfected lentiviral vectors to silence or overexpress FAK in HDP cells ex vivo. Early cell adhesion, cell survival and focal contacts (FCs)-related proteins (FAK and paxillin) were examined. By using immunofluorescence, the formation of FCs and cytoskeleton was detected, respectively. We found that both adhesion and survival of HDP cells were suppressed by FAK inhibition. However, FAK overexpression slightly inhibited cell adhesion and exhibited no change in cell survival compared with the control. A thick rim of cytoskeleton accumulated and smaller dot-shaped FCs appeared in FAK knockdown cells. Phosphorylation of paxillin (p-paxillin) was inhibited in FAK knockdown cells, verifying that the adhesion was inhibited. Less cytoskeleton and elongated FCs were observed in FAK-overexpressed cells. However, p-paxillin had no significant difference compared with the control. In conclusion, the data suggest that FAK maintains cell adhesion, survival and cytoskeleton formation, but excessive FAK has no positive effects on these aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee J, Jung ID, Chang WK, Park CG, Cho DY, Shin EY, et al. p85 beta-PIX is required for cell motility through phosphorylations of focal adhesion kinase and p38 MAP kinase. Exp Cell Res. 2005;307(2):315–28.

    Article  CAS  PubMed  Google Scholar 

  2. Zhao X, Guan JL. Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Adv Drug Deliv Rev. 2011;63(8):610–5. doi:10.1016/j.addr.2010.11.001.

    Article  CAS  PubMed  Google Scholar 

  3. Cheng R, Shao MY, Yang H, Cheng L, Wang FM, Zhou XD, et al. The effect of lysophosphatidic acid and Rho-associated kinase patterning on adhesion of dental pulp cells. Int Endod J. 2011;44(1):2–8. doi:10.1111/j.1365-2591.2010.01773.x.

    Article  CAS  PubMed  Google Scholar 

  4. Fogh BS, Multhaupt HA, Couchman JR. Protein kinase C, focal adhesions and the regulation of cell migration. J Histochem Cytochem. 2014;62(3):172–84. doi:10.1369/0022155413517701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fabry B, Klemm AH, Kienle S, Schaffer TE, Goldmann WH. Focal adhesion kinase stabilizes the cytoskeleton. Biophys J. 2011;101(9):2131–8. doi:10.1016/j.bpj.2011.09.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–87.

    Article  CAS  PubMed  Google Scholar 

  7. Liu C, Kaneko S, Soma K. Expression of integrinalpha5beta1, focal adhesion kinase and integrin-linked kinase in rat condylar cartilage during mandibular lateral displacement. Arch Oral Biol. 2008;53(8):701–8. doi:10.1016/j.archoralbio.2008.02.007.

    Article  CAS  PubMed  Google Scholar 

  8. Su Y, Besner GE. Heparin-binding EGF-like growth factor (HB-EGF) promotes cell migration and adhesion via focal adhesion kinase. J Surg Res. 2014;189(2):222–31. doi:10.1016/j.jss.2014.02.055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim SJ, Park KH, Park YG, Lee SW, Kang YG. Compressive stress induced the up-regulation of M-CSF, RANKL, TNF-alpha expression and the down-regulation of OPG expression in PDL cells via the integrin-FAK pathway. Arch Oral Biol. 2013;58(6):707–16. doi:10.1016/j.archoralbio.2012.11.003.

    Article  CAS  PubMed  Google Scholar 

  10. Aronsohn MS, Brown HM, Hauptman G, Kornberg LJ. Expression of focal adhesion kinase and phosphorylated focal adhesion kinase in squamous cell carcinoma of the larynx. Laryngoscope. 2003;113(11):1944–8.

    Article  CAS  PubMed  Google Scholar 

  11. Kahana O, Micksche M, Witz IP, Yron I. The focal adhesion kinase (P125FAK) is constitutively active in human malignant melanoma. Oncogene. 2002;21(25):3969–77.

    Article  CAS  PubMed  Google Scholar 

  12. Owens LV, Xu L, Craven RJ, Dent GA, Weiner TM, Kornberg L, et al. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res. 1995;55(13):2752–5.

    CAS  PubMed  Google Scholar 

  13. Canel M, Serrels A, Miller D, Timpson P, Serrels B, Frame MC, et al. Quantitative in vivo imaging of the effects of inhibiting integrin signaling via Src and FAK on cancer cell movement: effects on E-cadherin dynamics. Cancer Res. 2010;70(22):9413–22. doi:10.1158/0008-5472.CAN-10-1454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Golubovskaya VM, Zheng M, Zhang L, Li JL, Cance WG. The direct effect of focal adhesion kinase (FAK), dominant-negative FAK, FAK-CD and FAK siRNA on gene expression and human MCF-7 breast cancer cell tumorigenesis. BMC Cancer. 2009;9:280. doi:10.1186/1471-2407-9-280.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schultze A, Fiedler W. Therapeutic potential and limitations of new FAK inhibitors in the treatment of cancer. Expert Opin Investig Drugs. 2010;19(6):777–88. doi:10.1517/13543784.2010.489548.

    Article  CAS  PubMed  Google Scholar 

  16. An J, Zheng L, Xie S, Dun Z, Hao L, Yao D, et al. Down-regulation of focal adhesion kinase by short hairpin RNA increased apoptosis of rat hepatic stellate cells. APMIS. 2011;119(6):319–29. doi:10.1111/j.1600-0463.2011.02720.x.

    Article  CAS  PubMed  Google Scholar 

  17. Cheng R, Choudhury D, Liu C, Billet S, Hu T, Bhowmick NA. Gingival fibroblasts resist apoptosis in response to oxidative stress in a model of periodontal diseases. Cell Death Discov. 2015;1:15046. doi:10.1038/cddiscovery.2015.46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. International ethical guidelines for biomedical research involving human subjects. Bull Med Ethics. 2002;(182):17–23.

  19. Li M, Rossi JJ. Lentiviral vector delivery of siRNA and shRNA encoding genes into cultured and primary hematopoietic cells. Methods Mol Biol. 2008;433:287–99. doi:10.1007/978-1-59745-237-3_18.

    Article  CAS  PubMed  Google Scholar 

  20. Yoon H, Dehart JP, Murphy JM, Lim ST. Understanding the roles of FAK in cancer: inhibitors, genetic models, and new insights. J Histochem Cytochem. 2015;63(2):114–28. doi:10.1369/0022155414561498.

    Article  PubMed  Google Scholar 

  21. Deramaudt TB, Dujardin D, Noulet F, Martin S, Vauchelles R, Takeda K, et al. Altering FAK–paxillin interactions reduces adhesion, migration and invasion processes. PLoS One. 2014;9(3):e92059. doi:10.1371/journal.pone.0092059.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ben-Mahdi MH, Dang PM, Gougerot-Pocidalo MA, O’Dowd Y, El-Benna J, Pasquier C. Xanthine oxidase-derived ROS display a biphasic effect on endothelial cells adhesion and FAK phosphorylation. Oxid Med Cell Longev. 2016;2016:9346242. doi:10.1155/2016/9346242.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Meredith JE Jr, Fazeli B, Schwartz MA. The extracellular matrix as a cell survival factor. Mol Biol Cell. 1993;4(9):953–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. DiMichele LA, Doherty JT, Rojas M, Beggs HE, Reichardt LF, Mack CP, et al. Myocyte-restricted focal adhesion kinase deletion attenuates pressure overload-induced hypertrophy. Circ Res. 2006;99(6):636–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peng X, Kraus MS, Wei H, Shen TL, Pariaut R, Alcaraz A, et al. Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. J Clin Invest. 2006;116(1):217–27.

    Article  CAS  PubMed  Google Scholar 

  26. Golubovskaya VM, Kweh FA, Cance WG. Focal adhesion kinase and cancer. Histol Histopathol. 2009;24(4):503–10.

    CAS  PubMed  Google Scholar 

  27. Zaidel-Bar R, Ballestrem C, Kam Z, Geiger B. Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J Cell Sci. 2003;116(Pt 22):4605–13.

    Article  CAS  PubMed  Google Scholar 

  28. Schwartz MA, Schaller MD, Ginsberg MH. Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol. 1995;11:549–99.

    Article  CAS  PubMed  Google Scholar 

  29. Beningo KA, Dembo M, Kaverina I, Small JV, Wang YL. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol. 2001;153(4):881–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kaverina I, Krylyshkina O, Small JV. Regulation of substrate adhesion dynamics during cell motility. Int J Biochem Cell Biol. 2002;34(7):746–61.

    Article  CAS  PubMed  Google Scholar 

  31. Shan Y, Yu L, Li Y, Pan Y, Zhang Q, Wang F, et al. Nudel and FAK as antagonizing strength modulators of nascent adhesions through paxillin. PLoS Biol. 2009;7(5):e1000116. doi:10.1371/journal.pbio.1000116.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Laukaitis CM, Webb DJ, Donais K, Horwitz AF. Differential dynamics of alpha 5 integrin, paxillin, and alpha-actinin during formation and disassembly of adhesions in migrating cells. J Cell Biol. 2001;153(7):1427–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Choi CK, Zareno J, Digman MA, Gratton E, Horwitz AR. Cross-correlated fluctuation analysis reveals phosphorylation-regulated paxillin-FAK complexes in nascent adhesions. Biophys J. 2011;100(3):583–92. doi:10.1016/j.bpj.2010.12.3719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Holinstat M, Knezevic N, Broman M, Samarel AM, Malik AB, Mehta D. Suppression of RhoA activity by focal adhesion kinase-induced activation of p190RhoGAP: role in regulation of endothelial permeability. J Biol Chem. 2006;281(4):2296–305.

    Article  CAS  PubMed  Google Scholar 

  35. Lim Y, Lim ST, Tomar A, Gardel M, Bernard-Trifilo JA, Chen XL, et al. PyK2 and FAK connections to p190Rho guanine nucleotide exchange factor regulate RhoA activity, focal adhesion formation, and cell motility. J Cell Biol. 2008;180(1):187–203. doi:10.1083/jcb.200708194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Xiaoyu Li for assistance with fluorescence microscopy. This work was supported by the International Cooperation Project of Sichuan Province (2015HH0035) and the National Natural Science Foundation of China (81371134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13577_2017_159_MOESM1_ESM.tif

Identification of HDP cells. Immunostaining of vimentin and keratin in HDP cells. Scale bar 20 μm. Positive vimentin and negative keratin staining showed that HDP cells originated from mesoderm (TIFF 3570 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Y., Shao, M., Zou, W. et al. Focal adhesion kinase maintains, but not increases the adhesion of dental pulp cells. Human Cell 30, 98–105 (2017). https://doi.org/10.1007/s13577-017-0159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-017-0159-9

Keywords

Navigation