Skip to main content
Log in

Calpain 1 and -2 play opposite roles in cord formation of lymphatic endothelial cells via eNOS regulation

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Calpains are a family of calcium-dependent proteases. Two isoforms, calpain 1 and 2, have been implicated in angiogenesis and endothelial cell adhesion and migration. Calpains regulate the function of eNOS; however, the relation of calpains and eNOS to lymphangiogenesis is still unclear. In the present study, we evaluated the role of calpain and eNOS in the formation of cords by lymphatic endothelial cells on Matrigel. Human lymphatic microvascular dermal-derived endothelial cells were transfected with siRNA against calpain 1 or 2. Calpain 2 knockdown, but not calpain 1 knockdown, significantly reduced cord formation, adhesion, and migration on Matrigel. These decreases correlated with a reduction in eNOS, and phosphorylated eNOS and Hsp90 levels, as assayed by immunoprecipitation and western blotting. In contrast, the knockdown of calpain 1, but not calpain 2, increased cell adhesion, enhanced migration, and stabilized late-stage cord formation by increasing cord length compared to the control. These differences correlated with an increase in the level of phosphorylated eNOS. The results indicated that the functions of calpains and eNOS are important for cord formation by lymphatic endothelial cells. For the first time, we have found different functions of calpain 1 and 2. Calpain 1 is involved in the degradation of eNOS and Hsp90 and the phosphorylation of eNOS, while calpain 2 regulates eNOS phosphorylation during cord formation by lymphatic endothelial cells on Matrigel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell. 2010;140:460–76.

    Article  PubMed  CAS  Google Scholar 

  2. Lahdenranta J, Hagendoorn J, Padera TP, Hoshida T, Nelson G, Kashiwagi S, Jain RK, Fukumura D. Endothelial nitric oxide synthase mediates lymphangiogenesis and lymphatic metastasis. Cancer Res. 2009;69:2801–8.

    Article  PubMed  CAS  Google Scholar 

  3. Stacker SA, Achen MG. From anti-angiogenesis to anti-lymphangiogenesis: emerging trends in cancer therapy. Lymphat Res Biol. 2008;6:165–72.

    Article  PubMed  CAS  Google Scholar 

  4. Zatz M, Starling A. Calpains and disease. N Engl J Med. 2005;352:2413–23.

    Article  PubMed  CAS  Google Scholar 

  5. Carragher NO, Frame MC. Calpain: a role in cell transformation and migration. Int J Biochem Cell Biol. 2002;34:1539–43.

    Article  PubMed  CAS  Google Scholar 

  6. Ma H, Tochigi A, Shearer TR, Azuma M. Calpain inhibitor SNJ-1945 attenuates events prior to angiogenesis in cultured human retinal endothelial cells. J Ocul Pharmacol Ther. 2009;25:409–14.

    Article  PubMed  CAS  Google Scholar 

  7. Glading A, Lauffenburger DA, Wells A. Cutting to the chase: calpain proteases in cell motility. Trends Cell Biol. 2002;12:46–54.

    Article  PubMed  CAS  Google Scholar 

  8. Hoang MV, Nagy JA, Fox JE, Senger DR. Moderation of calpain activity promotes neovascular integration and lumen formation during VEGF-induced pathological angiogenesis. PLoS One. 2010;5:e13612.

    Article  PubMed  Google Scholar 

  9. Su Y, Cui Z, Li Z, Block ER. Calpain-2 regulation of VEGF-mediated angiogenesis. FASEB J. 2006;20:1443–51.

    Article  PubMed  CAS  Google Scholar 

  10. Nakamura J, Shigematsu S, Yamauchi K, Takeda T, Yamazaki M, Kakizawa T, Hashizume K. Biphasic function of focal adhesion kinase in endothelial tube formation induced by fibril-forming collagens. Biochem Biophys Res Commun. 2008;374:699–703.

    Article  PubMed  CAS  Google Scholar 

  11. Deroanne CF, Lapiere CM, Nusgens BV. In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovasc Res. 2001;49:647–58.

    Article  PubMed  CAS  Google Scholar 

  12. Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nat Rev Cancer. 2006;6:521–34.

    Article  PubMed  CAS  Google Scholar 

  13. Lee PC, Kibbe MR, Schuchert MJ, Stolz DB, Watkins SC, Griffith BP, Billiar TR, Shears LL 2nd. Nitric oxide induces angiogenesis and upregulates alpha(v)beta(3) integrin expression on endothelial cells. Microvasc Res. 2000;60:269–80.

    Article  PubMed  CAS  Google Scholar 

  14. Ziche M, Morbidelli L. Nitric oxide and angiogenesis. J Neurooncol. 2000;50:139–48.

    Article  PubMed  CAS  Google Scholar 

  15. Hammer T, Tritsaris K, Hubschmann MV, Gibson J, Nisato RE, Pepper MS, Dissing S. IL-20 activates human lymphatic endothelial cells causing cell signalling and tube formation. Microvasc Res. 2009;78:25–32.

    Article  PubMed  CAS  Google Scholar 

  16. Derakhshan B, Hao G, Gross SS. Balancing reactivity against selectivity: the evolution of protein S-nitrosylation as an effector of cell signaling by nitric oxide. Cardiovasc Res. 2007;75:210–9.

    Article  PubMed  CAS  Google Scholar 

  17. Prangsaengtong O, Koizumi K, Senda K, Sakurai H, Saiki I. eNOS and Hsp90 interaction directly correlates with cord formation in human lymphatic endothelial cells. Lymphat Res Biol. 2011;9:53–9.

    Article  PubMed  CAS  Google Scholar 

  18. Averna M, Stifanese R, De Tullio R, Passalacqua M, Salamino F, Pontremoli S, Melloni E. Functional role of HSP90 complexes with endothelial nitric-oxide synthase (eNOS) and calpain on nitric oxide generation in endothelial cells. J Biol Chem. 2008;283:29069–76.

    Article  PubMed  CAS  Google Scholar 

  19. Youn JY, Wang T, Cai H. An ezrin/calpain/PI3K/AMPK/eNOSs1179 signaling cascade mediating VEGF-dependent endothelial nitric oxide production. Circ Res. 2009;104:50–9.

    Article  PubMed  CAS  Google Scholar 

  20. Senda K, Koizumi K, Prangsaengtong O, Minami T, Suzuki S, Takasaki I, Tabuchi Y, Sakurai H, Doki Y, Misaki T, Saiki I. Inducible capillary formation in lymphatic endothelial cells by blocking lipid phosphate phosphatase-3 activity. Lymphat Res Biol. 2009;7:69–74.

    Article  PubMed  CAS  Google Scholar 

  21. Matsuo M, Sakurai H, Koizumi K, Saiki I. Curcumin inhibits the formation of capillary-like tubes by rat lymphatic endothelial cells. Cancer Lett. 2007;251:288–95.

    Article  PubMed  CAS  Google Scholar 

  22. Matsuo M, Yamada S, Koizumi K, Sakurai H, Saiki I. Tumour-derived fibroblast growth factor-2 exerts lymphangiogenic effects through Akt/mTOR/p70S6kinase pathway in rat lymphatic endothelial cells. Eur J Cancer. 2007;43:1748–54.

    Article  PubMed  CAS  Google Scholar 

  23. Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H, Tsujimoto Y. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA. 1998;95:14681–6.

    Article  PubMed  CAS  Google Scholar 

  24. Averna M, Stifanese R, De Tullio R, Salamino F, Bertuccio M, Pontremoli S, Melloni E. Proteolytic degradation of nitric oxide synthase isoforms by calpain is modulated by the expression levels of HSP90. FEBS J. 2007;274:6116–27.

    Article  PubMed  CAS  Google Scholar 

  25. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399:601–5.

    Article  PubMed  CAS  Google Scholar 

  26. Radisavljevic Z, Avraham H, Avraham S. Vascular endothelial growth factor up-regulates ICAM-1 expression via the phosphatidylinositol 3 OH-kinase/AKT/Nitric oxide pathway and modulates migration of brain microvascular endothelial cells. J Biol Chem. 2000;275:20770–4.

    Article  PubMed  CAS  Google Scholar 

  27. Lopez-Rivera E, Lizarbe TR, Martinez-Moreno M, Lopez-Novoa JM, Rodriguez-Barbero A, Rodrigo J, Fernandez AP, Alvarez-Barrientos A, Lamas S, Zaragoza C. Matrix metalloproteinase 13 mediates nitric oxide activation of endothelial cell migration. Proc Natl Acad Sci USA. 2005;102:3685–90.

    Article  PubMed  CAS  Google Scholar 

  28. Zaragoza C, Soria E, Lopez E, Browning D, Balbin M, Lopez-Otin C, Lamas S. Activation of the mitogen activated protein kinase extracellular signal-regulated kinase 1 and 2 by the nitric oxide-cGMP-cGMP-dependent protein kinase axis regulates the expression of matrix metalloproteinase 13 in vascular endothelial cells. Mol Pharmacol. 2002;62:927–35.

    Article  PubMed  CAS  Google Scholar 

  29. Kawasaki K, Smith RS Jr, Hsieh CM, Sun J, Chao J, Liao JK. Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates nitric oxide-induced endothelial cell migration and angiogenesis. Mol Cell Biol. 2003;23:5726–37.

    Article  PubMed  CAS  Google Scholar 

  30. Ausprunk DH, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res. 1977;14:53–65.

    Article  PubMed  CAS  Google Scholar 

  31. Duda DG, Fukumura D, Jain RK. Role of eNOS in neovascularization: NO for endothelial progenitor cells. Trends Mol Med. 2004;10:143–5.

    Article  PubMed  CAS  Google Scholar 

  32. Fontana J, Fulton D, Chen Y, Fairchild TA, McCabe TJ, Fujita N, Tsuruo T, Sessa WC. Domain mapping studies reveal that the M domain of hsp90 serves as a molecular scaffold to regulate Akt-dependent phosphorylation of endothelial nitric oxide synthase and NO release. Circ Res. 2002;90:866–73.

    Article  PubMed  CAS  Google Scholar 

  33. Scroggins BT, Neckers L. Just say NO: nitric oxide regulation of Hsp90. EMBO Rep. 2009;10:1093–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the president’s discretion expenses of the University of Toyama, a Grant-in-Aid for Young Scientists (B) (No. 15790089), Grants-in-Aid for Cancer Research (No. 16022224 and 16023225), and a grant for CLUSTER (Cooperative Link of Unique Science and Technology for Economy Revitalization) from the Ministry of Education, Culture, Sport, Science and Technology, Japan.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiichi Koizumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prangsaengtong, O., Senda, K., Doki, Y. et al. Calpain 1 and -2 play opposite roles in cord formation of lymphatic endothelial cells via eNOS regulation. Human Cell 25, 36–44 (2012). https://doi.org/10.1007/s13577-012-0042-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-012-0042-7

Keywords

Navigation