Recall that C > 0 is the total budget, T is all the nonempty subsets of tests, ct is the sum of the costs of the individual tests constituting t ∈ T, and the survey design is denoted by (wt, t ∈ T), where wt ≥ 0 is the number of participants (relaxed to a real-value) who are administered the subset t of tests, \(w_{t} \in \mathbb {R}_{+}\). The cost of this design is \({\sum }_{t \in T} w_{t} c_{t}\).
We begin with a specific observation with regard to our model.
Remark 2.
Let t∗ = (1,1,1). When the specificities and sensitivities are as given by Table 2, it is easy to verify (A1) and (A2) hold. Indeed, from Eq. 2.2, defining
$$ v(y,t^{*}) := \left( q(y|1,t^{*}) - q(y|4,t^{*}), q(y|2,t^{*}) - q(y|4,t^{*}), q(y|3,t^{*}) - q(y|4,t^{*}) \right)^{T}, $$
and the probability
$$ P(y|t^{*}) := \sum\limits_{s=1}^{3} p_{s} q(y|s,t^{*}) + (1-p_{1}-p_{2}-p_{3})q(y|4,t^{*}), $$
we have for any nonzero \(x \in \mathbb {R}^{3}\)
$$ \begin{array}{@{}rcl@{}} x^{T} I_{t^{*}}(p) x & = & x^{T} \left( \sum\limits_{y \in \mathcal{Y}_{t^{*}}} \frac{1}{P(y|t^{*})} v(y,t^{*}) v(y,t^{*})^{T} \right) x \\ & = & \sum\limits_{y \in \mathcal{Y}_{t^{*}}} \frac{1}{P(y|t^{*})} \left|x^{T} v(y,t^{*})\right|^{2}\\ & \geq & \sum\limits_{y \in \mathcal{Y}_{t^{*}}} \left|x^{T} v(y,t^{*})\right|^{2} \\ & > & 0, \end{array} $$
where the last strict inequality holds because \(\{ v(y,t^{*}), y \in \mathcal {Y}_{t^{*}} \}\) is linearly independent, a fact that can verified for the given sensitivities and the specificities. This not only verifies assumption (A1) for our example, but also assumption (A2).
We shall use the fact the model satisfies assumption (A1) or (A2) in the proofs below.
Proof of Theorem 1.
Let vt = wtct/C, t ∈ T. Recall a(v;p) from Eq. 3.2. It is immediate that a minimiser of Eq. 3.2 will yield a c-optimal design given by Eq. 3.1. To find a minimiser, first consider the following optimisation problem
$$ \begin{array}{@{}rcl@{}} \text{minimise} & & a(v;p) \end{array} $$
(6.1)
$$ \begin{array}{@{}rcl@{}} \text{subject to} &&\sum\limits_{t \in T} v_{t} \leq 1, \quad v_{t} \geq 0, t \in T. \end{array} $$
(6.2)
By Assumption 1, there exists a v(0) such that \(a(v^{(0)}; p) < \infty \), and hence the minimisation can be restricted to the set \(\mathcal {C} = \{(v_{t}, t \in T): a(v;p) \leq a(v^{(0)}; p), v_{t} \geq 0, t \in T, {\sum }_{t \in T} v_{t} \leq 1\}\). With this restriction on the constraint set, the above problem is a convex optimisation problem. Indeed, the objective function is convex on \(\mathcal {C}\); for any λ ∈ (0,1) and any two designs v(a) and v(b) in \(\mathcal {C}\), the matrix
$$ \begin{array}{@{}rcl@{}} \lambda \left( \sum\limits_{t \in T} \frac{v^{(a)}_{t} I_{t}(p)}{c_{t}} \right)^{-1} + (1-\lambda) \left( \sum\limits_{t \in T} \frac{v^{(b)}_{t} I_{t}(p)}{c_{t}} \right)^{-1} - \left( \sum\limits_{t \in T} \frac{(\lambda v^{(a)}_{t} + (1-\lambda) v^{(b)}_{t}) I_{t}(p)}{c_{t}} \right)^{-1} \end{array} $$
is positive semidefinite, and the constraint set \(\mathcal {C}\) is a convex subset of \(\mathbb {R}^{|T|}\). Moreover \(\mathcal {C}\) is also compact: for any sequence {v(n), n ≥ 1} in \(\mathcal {C}\), being a sequence in the compact set (6.2), we can extract a subsequence that converges to an element \(\tilde {v}\) of Eq. 6.2; from the definition of \(\mathcal {C}\), we must have \(a(\tilde {v};p) \leq a(v^{(0)};p)\) which implies that \(\tilde {v} \in \mathcal {C}\). Hence there exists a \(v^{*} = (v^{*}_{t}, t\in T)\) that solves the above problem, see Boyd and Vandenberghe (2004, Section 4.2.2). If \({\sum }_{t \in T} v_{t}^{*} < 1\), then we may scale up the v∗ by a factor to use the full budget, satisfy the sum-constraint with equality, and strictly reduce the objective function by the same factor, which is a contradiction to v∗’s optimality. Hence \({\sum }_{t \in T} v_{t}^{*} = 1\). Hence \(w^{*}_{t} = v^{*}_{t} C / c_{t}\) is the desired c-optimal design and the minimum variance is given by a(v∗;p)/C. This completes the proof. □
For information on the structure of an optimal solution, consider the Lagrangian
$$ \begin{array}{@{}rcl@{}} L(v, \lambda, \mu) = u^{T} \left( \sum\limits_{t \in T} v_{t} I_{t}(p)/c_{t} \right)^{-1} u - \sum\limits_{t \in T} \lambda_{t} v_{t} + \mu\left( \sum\limits_{t \in T} v_{t} -1\right). \end{array} $$
For each t ∈ T,
$$ \begin{array}{@{}rcl@{}} \partial_{v_{t}} L(w, \lambda, \mu) & =& - u^{T} \left( {\sum}_{t^{\prime} \in T} v_{t^{\prime}} I_{t^{\prime}}(p)/c_{t^{\prime}} \right)^{-1} \frac{I_{t}(p)}{c_{t}} \left( {\sum}_{t^{\prime} \in T} v_{t^{\prime}} I_{t^{\prime}}(p)/c_{t^{\prime}} \right)^{-1} u \\&&- \lambda_{t} + \mu. \end{array} $$
By the Karush–Kuhn–Tucker conditions (Boyd and Vandenberghe, 2004, Chapter 5), there exist non-negative numbers \((\lambda ^{*}_{t}, t \in T)\) and μ∗ such that
$$ \begin{array}{@{}rcl@{}} -u^{T} \left( \sum\limits_{t^{\prime} \in T} v^{*}_{t^{\prime}} I_{t^{\prime}}(p)/c_{t^{\prime}} \right)^{-1} \frac{I_{t}(p)}{c_{t}} \left( \sum\limits_{t^{\prime} \in T} v^{*}_{t^{\prime}} I_{t^{\prime}}(p)/c_{t^{\prime}} \right)^{-1} &\! \\u - \lambda^{*}_{t} + \mu^{*} = 0, t \in T, \end{array} $$
(6.3)
$$ \begin{array}{@{}rcl@{}} \lambda^{*}_{t} v^{*}_{t}= 0, t \in T, \end{array} $$
(6.4)
$$ \begin{array}{@{}rcl@{}} \mu^{*}\left( \sum\limits_{t \in T} v^{*}_{t} - 1\right) = 0. \end{array} $$
(6.5)
Clearly v∗≢0 and μ∗ > 0, otherwise Eq. 6.3 is violated. Conditions (6.3) and (6.4) together with the fact that \(w^{*}_{t} = v^{*}_{t} C/c_{t}\) imply that whenever \(w^{*}_{t} > 0\) for some t ∈ T, we must have
$$ \begin{array}{@{}rcl@{}} u^{T} \left( \sum\limits_{t \in T} v^{*}_{t} I_{t}(p)/c_{t} \right)^{-1} \frac{I_{t}(p)}{c_{t}} \left( \sum\limits_{t \in T} v^{*}_{t} I_{t}(p)/c_{t} \right)^{-1} u = \mu^{*}. \end{array} $$
We can compute μ∗ easily: multiplying by \(v_{t}^{*}\), summing over t, and using \({\sum }_{t \in T} v_{t}^{*} = 1\), we see that
$$\mu^{*} = u^{T} \left( \sum\limits_{t \in T} v^{*}_{t} I_{t}(p)/c_{t} \right)^{-1} u = a(v^{*};p).$$
The proof of Theorem 2 requires a preliminary lemma. Fix K ≥ 3 and let \(v_{1}, \ldots , v_{K} \in \mathbb {R}^{3}\). For \(a \in \mathbb {R}^{K}\) such that \({\sum }_{i=1}^{K} a_{i} = 1\), define
$$ \begin{array}{@{}rcl@{}} I(a) = \sum\limits_{i=1}^{K} \frac{1}{a_{i}} v_{i} {v_{i}^{T}}. \end{array} $$
We first prove the following lemma. A similar concavity property holds in the context of parallel sum of positive definite matrices; see (Bhatia, 2007, Theorem 4.1.1). Let \(\mathbb {R}^{K}_{++}\) denote the set of K-vectors whose entries are strictly positive.
Lemma 1.
Assume I(a) is invertible for all \(a \in \mathbb {R}^{K}_{++}\). The mapping a↦uTI(a)− 1u is concave on \(\mathbb {R}^{K}_{++}\).
Proof.
Let f(a) = uTI(a)− 1u. We have, for i = 1,2,…, K,
$$ \begin{array}{@{}rcl@{}} \partial_{a_{i}} I(a)^{-1} &= &-I(a)^{-1} (\partial_{a_{i}}I(a)) I(a)^{-1} \\ & =& \frac{1}{{a_{i}^{2}}}I(a)^{-1} v_{i} {v_{i}^{T}} I(a)^{-1}. \end{array} $$
We also have, for i, j = 1,2,…, K,
$$ \begin{array}{@{}rcl@{}} \partial^{2}_{a_{i} a_{j}} I(a)^{-1}\!\!\!& =&\!\!\! \frac{I(a)^{-1} v_{i} {v_{i}^{T}} I(a)^{-1} v_{j} {v_{j}^{T}} I(a)^{-1} + I(a)^{-1} v_{j} {v_{j}^{T}} I(a)^{-1} v_{i} {v_{i}^{T}} I(a)^{-1}}{{a_{i}^{2}} {a_{j}^{2}}} \\ && \!\!\!+ \delta_{i=j} \left( \frac{-2}{{a_{i}^{3}}}\right) I(a)^{-1} v_{i} {v_{i}^{T}} I(a)^{-1}. \end{array} $$
Hence
$$ \begin{array}{@{}rcl@{}} \frac{1}{2}\partial^{2}_{a_{i} a_{j}} f(a)& =& \frac{u^{T}I(a)^{-1}v_{i} \times {v_{i}^{T}} I(a)^{-1} v_{j} \times u^{T} I(a)^{-1} v_{j}}{{a_{i}^{2}} {a_{j}^{2}}} \\ &&- \delta_{i=j}\frac{1}{{a_{i}^{3}}} (u^{T} I(a)^{-1} v_{i})^{2}. \end{array} $$
Let βi = uTI(a)− 1vi and let \(B_{i,j} = {v_{i}^{T}} I(a)^{-1} v_{j}\). Then
$$ \begin{array}{@{}rcl@{}} \frac{1}{2}\partial^{2}_{a_{i} a_{j}}f(a) = \frac{\beta_{i} B_{i,j} \beta_{j}}{{a_{i}^{2}} {a_{j}^{2}}} - \delta_{i=j} \frac{1}{{a_{i}^{3}}} {\beta_{i}^{2}}. \end{array} $$
For positive semidefiniteness of the Hessian of f, it suffices to show that
$$ \begin{array}{@{}rcl@{}} \sum\limits_{i,j =1}^{K} \frac{x_{i} \beta_{i} B_{i,j}\beta_{j} x_{j}}{{a_{i}^{2}} {a_{j}^{2}}} - \sum\limits_{i=1}^{K} \frac{{x_{i}^{2}} {\beta_{i}^{2}}}{{a_{i}^{3}}} \leq 0 \end{array} $$
for all \(x \in \mathbb {R}^{K}\). With \(\alpha _{i} = \frac {x_{i} \beta _{i}}{a_{i} \sqrt {a_{i}}}\), the above condition becomes
$$ \sum\limits_{i,j=1}^{K} \alpha_{i} \frac{B_{i,j}}{\sqrt{a_{i} a_{j}}} \alpha_{j} - \sum\limits_{i=1}^{K} {\alpha_{i}^{2}} \leq 0, $$
which is the same as asking for the largest eigenvalue of the matrix with entries
$$ \left( \frac{B_{i,j}}{\sqrt{a_{i} a_{j}}} \right)_{i,j = 1,2,\ldots, K} $$
to be at most 1. Note that
$$ \begin{array}{@{}rcl@{}} \frac{B_{i,j}}{\sqrt{a_{i} a_{j}}} & =& \frac{1}{\sqrt{a_{i}}} {v_{i}^{T}} I(a)^{-1} v_{j} \frac{1}{\sqrt{a_{j}}} \\ & =& \left( \frac{v_{i}}{\sqrt{a_{i}}}\right)^{T} I(a)^{-1}\left( \frac{v_{j}}{\sqrt{a_{j}}}\right) \\ &=& \left( \frac{v_{i}}{\sqrt{a_{i}}}\right)^{T} \left( \sum\limits_{i^{\prime}} \left( \frac{v_{i^{\prime}}}{\sqrt{a_{i^{\prime}}}}\right) \left( \frac{v_{i^{\prime}}}{\sqrt{a_{i^{\prime}}}}\right)^{T} \right)^{-1} \left( \frac{v_{j}}{\sqrt{a_{j}}}\right). \end{array} $$
Let \(\tilde {v}_{i} = \frac {v_{i}}{\sqrt {a_{i}}}\) and \(\tilde {V} = [\tilde {v}_{1}, \ldots , \tilde {v}_{K}]\). Then the above entry is the (i, j) entry of the matrix \(\tilde {V}^{T} (\tilde {V} \tilde {V}^{T})^{-1} \tilde {V}\). It therefore suffices to show that, in positive semidefinite ordering,
$$ \tilde{V}^{T} (\tilde{V} \tilde{V}^{T})^{-1} \tilde{V} \leq I_{K}, $$
that is, for each \(z \in \mathbb {R}^{K}\), we must have
$$ (\tilde{V}z)^{T} (\tilde{V} \tilde{V}^{T})^{-1} \tilde{V}z \leq \|z\|^{2}. $$
Let \(\tilde {V}\) have the singular value decomposition UΣVT, where U and V are unitary matrices of appropriate sizes. Since I(a) is invertible, it follows that \((\tilde {V}\tilde {V}^{T})^{-1} = U {\Lambda }^{-1} U^{T}\) where Λ = ΣΣT. Also ΣT(ΣΣT)− 1Σ is a block diagonal matrix with I3 and OK− 3 (all zero matrix square matrix of dimension K − 3) on the diagonal. Therefore, the left-hand side of the above display becomes
$$ \begin{array}{@{}rcl@{}} z^{T} V {\Sigma}^{T} U^{T} U {\Lambda}^{-1} U^{T} U {\Sigma} V^{T} z &=& z^{T} V {\Sigma}^{T} ({\Sigma} {\Sigma}^{T})^{-1} {\Sigma} V^{T} z\\ &=& z^{T} V \begin{bmatrix} I_{3} & O_{3,K-3}\\ O_{K-3,3} & O_{K-3} \end{bmatrix} V^{T} z \end{array} $$
where Om, n is the all zero matrix of dimensions m × n. Since V is orthonormal, the lemma follows. □
Proof of Theorem 2.
Consider the zero-sum game G. By Assumption 1, there exists a design v(0) such that \(\sup _{p \in \mathcal {P}} a(v^{(0)};p) < \infty \); hence, we may restrict the set of designs to
$$\mathcal{C}\!:=\!\left\{(v_{t}, t \in T): v_{t} \geq 0, t \in T, \sum\limits_{t \in T} v_{t} = 1, a(v;p) \leq \underset{p^{\prime} \in \mathcal{P}}{\sup}a(v^{(0)};p^{\prime}) \text{ for all }p \right\}. $$
Recall that, for a given pair of strategies (v, p), the pay-off of the maximising player is \(a(v; p) = u^{T} \left ({\sum }_{t \in T} v_{t} I_{t}(p)/c_{t} \right )u\). For each \(p \in \mathcal {P}\), as argued in the proof of Theorem 1, the mapping v↦a(v;p) is convex on \(\mathcal {C}\), and \(\mathcal {C}\) is a convex and compact subset of the design space. Recall q from Eq. 2.1 and the Fisher information matrix from Eq. 2.2. The mapping
$$ p \mapsto \sum\limits_{s=1}^{3} p_{s} q(y|s,t) + (1-p_{1}-p_{2}-p_{3})q(y|4,t), \forall y \in \mathcal{Y}_{t}, \forall t \in T $$
is linear. So by Lemma 1, for each fixed \(v \in \mathcal {C}\), the mapping p↦a(v;p) is concave. Also, \(\mathcal {P}\) is convex and compact. Hence by Glicksberg’s fixed point theorem (Glicksberg, 1952) there exists a Nash equilibrium for the game G. The result now follows from Theorem 1 and the interchangeability property of Nash equilibria in two-player zero-sum games (see (Tijs, 2003, Theorem 3.1)). □
Proof of Theorem3.
A local c-optimal design that minimises the variance of the estimator \({\sum }_{d \in [D]}n_{d} (u^{T}\hat {p}(d))\) is obtained by finding a solution \(v_{t,d}^{*}, t \in T, d = 1, \ldots , D\), to the following optimisation problem:
$$ \begin{array}{@{}rcl@{}} \text{minimise} && \qquad \sum\limits_{d =1}^{D} {n_{d}^{2}} u^{T} \left( \sum\limits_{t \in T} v_{t,d} I_{t}(p(d))/c_{t} \right)^{-1} u \\ \text{subject to} && \qquad \sum\limits_{t \in T} \sum\limits_{d=1}^{D} v_{t,d} \leq 1, \quad v_{t,d} \geq 0, t \in T, d = 1, {\ldots} , D. \end{array} $$
(6.6)
With additional variables (md, d = 1,…, D) which can be interpreted as the budget fractions given to each district, the value of the above optimisation problem is equal to the value of the following problem:
$$ \begin{array}{@{}rcl@{}} \text{minimise} &&\sum\limits_{d =1}^{D} {n_{d}^{2}} \times u^{T} \left( \sum\limits_{t \in T} v_{t,d} I_{t}(p(d))/c_{t} \right)^{-1} u \\ \text{subject to} & & \sum\limits_{t \in T} v_{t,d} \leq m_{d}, d = 1, \ldots, D, \\ && v_{t,d} \geq 0, t \in T, d = 1, {\ldots} , D, \\ && \sum\limits_{d=1}^{D} m_{d} \leq 1, \\ && m_{d} \geq 0, d = 1, \ldots, D . \end{array} $$
(6.7)
For a given (md, d = 1,…D), the optimisation in Eq. 6.7 over the variables (vt, d, t ∈ T, d = 1,…, D) can be performed separately for each d. As argued in the proof of Theorem 1, using Assumption 1 for each p(d), d = 1,…, D, there exists a solution to the problem (3.2) with p(d) in place of p; we denote it by v∗(p(d)) and the corresponding value by a(v∗(p(d));p(d)). Hence the above problem reduces to
$$ \begin{array}{@{}rcl@{}} \text{minimise} && \sum\limits_{d =1}^{D} \frac{{n_{d}^{2}}}{m_{d}} a(v^{*}(p(d));p(d)) \\ \text{subject to} &&\sum\limits_{d=1}^{D} m_{d} \leq 1, \\ && m_{d} \geq 0, d = 1, \ldots, D . \end{array} $$
(6.8)
Note that Eq. 6.8 is a convex problem in the variables (md, d = 1,…, D); indeed the mapping \((m_{d}, d=1,\ldots , D) \mapsto {\sum }_{d \in [D]} \frac {{n_{d}^{2}}}{m_{d}} a(v^{*}(p(d));p(d))\) is lower-semicontinuous, convex and the constraint set is a compact and convex subset of \(\mathbb {R}_{+}^{D}\). Hence, there exists a solution \((m_{d}^{*}, d=1, \ldots , D)\) to the above problem. Consider the Lagrangian
$$ L(m, \lambda, \mu) = \sum\limits_{d =1}^{D} \frac{{n_{d}^{2}}}{m_{d}} a(v^{*}(p(d));p(d)) - \sum\limits_{d=1}^{d} \lambda_{d} m_{d} + \mu\left( {\sum}_{d=1}^{D} m_{d}-1\right). $$
By the Karush-Kuhn-Tucker conditions (Boyd and Vandenberghe, 2004, Chapter 5), there exist non-negative numbers \((\lambda _{d}^{*}, d=1,\ldots , D)\) and μ∗ such that the following conditions hold:
$$ \begin{array}{@{}rcl@{}} -\frac{{n_{d}^{2}} a(v^{*}(p(d)); p(d))}{(m_{d}^{*})^{2}} - \lambda_{d}^{*} + \mu^{*} &=&0, d=1, \ldots, D, \end{array} $$
(6.9)
$$ \begin{array}{@{}rcl@{}} \lambda_{d}^{*} m_{d}^{*} &=& 0, d = 1, \ldots, D, \end{array} $$
(6.10)
$$ \begin{array}{@{}rcl@{}} \mu^{*}\left( \sum\limits_{d=1}^{D} m_{d}^{*} - 1 \right) &=& 0 . \end{array} $$
(6.11)
If μ∗ = 0, then Eq. 6.9 is violated for all d; hence μ∗ > 0 and by Eq. 6.11, \({\sum }_{d \in [D]} m^{*}_{d} = 1\). Whenever \(m_{d}^{*} >0\), we must have \(\lambda _{d}^{*} =0\), and by Eq. 6.9, \(m_{d}^{*} = n_{d}\sqrt {\mu ^{*} a(v^{*}(p(d)); p(d))}\). Using \({\sum }_{d=1}^{D} m_{d}^{*} = 1\), we can solve for μ∗ to get
$$ m_{d}^{*} = \frac{n_{d} \sqrt{a(v^{*}(p(d)); p(d))}}{{\sum}_{d^{\prime}=1}^{D} n_{d^{\prime}}\sqrt{a(v^{*}(p(d^{\prime})); p(d^{\prime}))}}. $$
(6.12)
This solves problem Eq. 6.8. By setting
$$ v^{*}_{t,d} = v^{*}_{t}(p(d)) m_{d}^{*}, \quad t \in T, d=1,\ldots, D $$
where \(m_{d}^{*}\) is as given in Eq. 6.12, we also solve problem Eq. 6.7. By the equivalence of the problems Eq. 6.6 and Eq. 6.7, we have a solution to problem Eq. 6.6, which can be described as follows: Allocate \(C_{d} = C m_{d}^{*}\) to district d, and by Theorem 1, allocate \(w^{*}_{t}(d) = v^{*}_{t}(p(d)) C_{d}/c_{t}\) for test pattern t in district d. This completes the proof. □
Proof of Theorem 4.
The proof is straightforward and follows the same arguments used in the proof of Theorem3; we only have to use s in place of d and recognise that the Fisher information matrices may depend on s. □