Bayesian Analysis of Double Seasonal Autoregressive Models


In this paper we use the Gibbs sampling algorithm to present a Bayesian analysis to multiplicative double seasonal autoregressive (DSAR) models, considering both estimation and prediction problems. Assuming the model errors are normally distributed and using natural conjugate and g priors on the initial values and model parameters, we show that the conditional posterior distributions of the model parameters and variance are multivariate normal and inverse gamma respectively, and the conditional predictive distribution of the future observations is a multivariate normal. Using these closed-form conditional posterior and predictive distributions, we apply the Gibbs sampling to approximate empirically the marginal posterior and predictive distributions, enabling us easily to carry out multiple-step ahead predictions. The proposed Bayesian method is evaluated using simulation study and real-world time series dataset.

This is a preview of subscription content, log in to check access.


  1. Amin, A. (2009). Bayesian Inference for Seasonal ARMA Models: A Gibbs Sampling Approach. Master’s Thesis, Statistics Department Faculty of Economics and Political Science, Cairo University, Egypt.

  2. Amin, A. (2017a). Bayesian Inference for Double SARMA Models. Communications in Statistics: Theory and Methods.

  3. Amin, A. (2017b). Bayesian inference for double seasonal moving average models: A Gibbs sampling approach. Pak. J. Stat. Oper. Res. 13, 3, 483–499.

    MathSciNet  Article  Google Scholar 

  4. Amin, A. (2017c). Gibbs sampling for double seasonal ARMA models. In: Proceedings of of the 29th Annual International Conference on Statistics and Computer Modeling in Human and Social Sciences, Egypt.

  5. Amin, A. (2017d). Identification of double seasonal autoregressive models: a bayesian approach. In: Proceedings of the 52nd Annual International Conference of Statistics, Computer Science and Operations Research, Egypt.

  6. Amin, A. (2017e). Sensitivity to prior specification in Bayesian identification of autoregressive time series models. Pak. J. Stat. Oper. Res. 13, 4, 699–713.

    MathSciNet  Article  Google Scholar 

  7. Amin, A. (2018a). Bayesian Identification of Double Seasonal Autoregressive Time Series Models. Communications in Statistics: Simulation and Computation,

  8. Amin, A. (2018b). Kullback-Leibler Divergence to Evaluate Posterior Sensitivity to Different Priors for Autoregressive Time Series Models. Communications in Statistics: Simulation and Computation,

  9. Amin, A. and Ismail, M. (2015). Gibbs sampling for double seasonal autoregressive models. Communications for Statistical Applications and Methods 22, 6, 557–573.

    MathSciNet  Article  Google Scholar 

  10. Au, T., Ma, G. and Yeung, S. (2011). Automatic Forecasting of Double Seasonal Time Series with Applications on Mobility Network Traffic Prediction. Joint Statistical Meetings, Florida, USA.

  11. Baek, M. (2010). Forecasting hourly electricity loads of South Korea: Innovations state space modeling approach. The Korean Journal of Economics 17, 2, 301–317.

    Google Scholar 

  12. Box, G., Jenkins, G., Reinsel, G. and Ljung, G. (2016). Time Series Analysis, Forecasting and Control. Wiley, Hoboken.

    Google Scholar 

  13. Broemeling, L.D. (1985). Bayesian analysis of linear models. CRC Press.

  14. Broemeling, L.D. and Shaarawy, S. (1984). Bayesian inferences and forecasts with moving average processes. Communications in Statistics: Theory and Methods 13, 1871–1888.

    MathSciNet  Article  Google Scholar 

  15. Broemeling, L.D. and Shaarawy, S. (1988). Time series: a bayesian analysis in time domain. Marcel Dekker, New York, spall, J. (ed.),.

  16. Cortez, P., Rio, M., Rocha, M. and Sousa, P. (2012). Multi-scale internet traffic forecasting using neural networks and time series methods. Expert. Syst. 29, 2, 143–155.

    Google Scholar 

  17. Cruz, A., Munoz, A., Zamora, J.L. and Espinola, R (2011). The effect of wind generation and weekday on Spanish electricity spot price forecasting. Electr. Power Syst. Res. 81, 10, 1924–1935.

    Article  Google Scholar 

  18. Fernandez, C., Ley, E. and Steel, M. (2001). Benchmark priors for Bayesian model averaging. J. Econ. 100, 2, 381–427.

    MathSciNet  Article  MATH  Google Scholar 

  19. Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculations of posterior moments. Clarendon Press, Oxford, Bernardo, J. M., Berger, J. O., Dawid, A. P. and Smith, A. F. M. (eds.),.

  20. Ismail, M. and Amin, A. (2014). Gibbs sampling for SARMA models. Pakistan Journal of Statistics 30, 2, 153–168.

    MathSciNet  Google Scholar 

  21. Kim, M.S. (2013). Modeling special-day effects for forecasting intraday electricity demand. Eur. J. Oper. Res. 230, 1, 170–180.

    Article  Google Scholar 

  22. Laing, W. and Smith, D. (1987). A comparison of time series forecasting methods for predicting the CEGB demand. In: Proceedings of the Ninth Power Systems Computation Conference.

  23. Mohamed, N., Ahmad, M. and Suhartono, S. (2011). Forecasting short term demand using double seasonal ARIMA model. World Appl. Sci. J. 13, 27–35.

    Google Scholar 

  24. Raftrey, A.E. and Lewis, S. (1995). The number of iterations, convergence diagnostics and generic metropolis algorithms. Chapman and Hall, London, Gilks, W. R., Spiegelhalter, D. J. and Richardson, S. (eds.),.

  25. Shaarawy, S. and Ali, S. (2003). Bayesian identification of seasonal autoregressive models. Communications in Statistics: Theory and Methods 32, 5, 1067–1084.

    MathSciNet  Article  MATH  Google Scholar 

  26. Taylor, J.W., De Menezes, L.M. and McSharry, P. (2006). Comparison of univariate methods for forecasting electricity demand up to a day ahead. Int. J. Forecast. 22, 1–16.

    Article  Google Scholar 

  27. Taylor, J.W. (2008a). An evaluation of methods for very short-term load forecasting using minute-by-minute British data. Int. J. Forecast. 24, 645–658.

    Article  Google Scholar 

  28. Taylor, J.W. (2008b). A Comparison of univariate time series methods for forecasting intraday arrivals at a call center. Manag. Sci. 54, 253–265.

    Article  MATH  Google Scholar 

  29. Thompson, H. and Tiao, G. (1971). Analysis of telephone data. Bell J. Econ. Manag. Sci. 2, 514–541.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ayman A. Amin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amin, A.A. Bayesian Analysis of Double Seasonal Autoregressive Models. Sankhya B (2019).

Download citation

Keywords and phrases

  • Multiplicative seasonal autoregressive
  • Multiple seasonality
  • Posterior analysis
  • Predictive analysis
  • MCMC methods
  • Gibbs sampler
  • Internet traffic data

AMS (2000) subject classification

  • Primary 37M10
  • Secondary 62F15