Skip to main content
Log in

A characterization of Bayesian robustness for a normal location parameter

  • Published:
Sankhya B Aims and scope Submit manuscript

Abstract

We consider the Bayesian estimation of a location parameter θ based on one observation x from a univariate normal distribution with mean θ and variance one, together with a prior π. In general, the mean t(x) in the posterior distribution does not satisfy the requirement that x − t(x) vanishes as x approaches ∞ (for example, when π is normal or Laplace), that is, the prior is not robust. In this paper we obtain, under mild regularity conditions on π, a necessary and sufficient (and easy to apply) condition for robustness, and identify classes of robust priors. Special attention is paid to the Subbotin prior because of its role in Bayesian model averaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrade, J.A.A. and O’Hagan, A. (2006). Bayesian robustness modeling using regularly varying distributions. Bayesian Anal., 1, 169–188.

    Article  MathSciNet  Google Scholar 

  • Andrade, J.A.A. and O’Hagan, A. (2011). Bayesian robustness modelling of location and scale parameters. Scand. J. Stat., 38, 691–711.

    Article  MathSciNet  MATH  Google Scholar 

  • Berger, J.O. (1994). An overview of robust Bayesian analysis. Test, 3, 5–58.

    Article  MathSciNet  MATH  Google Scholar 

  • Box, G.E.P. and Tiao, G.C. (1973). Bayesian inference in statistical analysis. Addison-Wesley, Reading, Massachusetts.

    MATH  Google Scholar 

  • Carvalho, C.M., Polson, N.G. and Scott, J.G. (2010). The horseshoe estimator for sparse signals. Biometrika, 97, 465–480.

    Article  MathSciNet  MATH  Google Scholar 

  • Choy, S.T.B. and Smith, A.F.M. (1997). On robust analysis of a normal location parameter. J. R. Stat. Soc. Ser. B, 59, 463–474.

    Article  MathSciNet  MATH  Google Scholar 

  • Choy, S.T.B. and Walker, S.G. (2003). The extended exponential power distribution and Bayesian robustness. Statist. Probab. Lett., 65, 227–232.

    Article  MathSciNet  MATH  Google Scholar 

  • Danilov, D. and Magnus, J.R. (2004). On the harm that ignoring pretesting can cause. J. Econom., 122, 27–46.

    Article  MathSciNet  Google Scholar 

  • Dawid, A.P. (1973). Posterior expectations for large observations. Biometrika, 60, 664–667.

    Article  MathSciNet  MATH  Google Scholar 

  • de Haan, L. and Ferreira, A. (2006). Extreme value theory: An introduction. Springer, New York.

    Google Scholar 

  • De Luca, G. and Magnus, J.R. (2011). Bayesian model averaging and weighted average least squares: Equivariance, stability, and numerical issues. Stata J., 11, 518–544.

    Google Scholar 

  • Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc., 96, 1348–1360.

    Article  MathSciNet  MATH  Google Scholar 

  • Finucan, H.M. (1973). The relative position of the two regression curves. J. R. Stat. Soc. Ser. B, 35, 316–322.

    MathSciNet  MATH  Google Scholar 

  • Frank, I.E. and Friedman, J.H. (1993). A statistical view of some chemometrics regression tools. Technometrics, 35, 109–135.

    Article  MATH  Google Scholar 

  • Griffin, J.E. and Brown, P.J. (2010). Inference with normal-gamma prior distributions in regression problems. Bayesian Anal., 5, 171–188.

    Article  MathSciNet  Google Scholar 

  • Hans, C. (2009). Bayesian lasso regression. Biometrika, 96, 835–845.

    Article  MathSciNet  MATH  Google Scholar 

  • Hodges, J.L. and Lehmann, E.L. (1950). Some problems in minimax point estimation. Ann. Math. Statist., 21, 182–197.

    Article  MathSciNet  MATH  Google Scholar 

  • Leamer, E.E. (1978). Specification searches: Ad hoc inference with nonexperimental data. Wiley, New York.

    MATH  Google Scholar 

  • Lindley, D.V. (1968). The choice of variables in multiple regression (with discussion). J. R. Stat. Soc. Ser. B, 30, 31–66.

    MathSciNet  MATH  Google Scholar 

  • Magnus, J.R. (2002). Estimation of the mean of a univariate normal distribution with known variance. Econom. J., 5, 225–236.

    Article  MathSciNet  MATH  Google Scholar 

  • Magnus, J.R. and Durbin, J. (1999). Estimation of regression coefficients of interest when other regression coefficients are of no interest. Econometrica, 67, 639–643.

    Article  MathSciNet  MATH  Google Scholar 

  • Magnus, J.R., Powell, O. and Prüfer, P. (2010). A comparison of two model averaging techniques with an application to growth empirics. J. Econom., 154, 139–153.

    Article  Google Scholar 

  • Masreliez, C.J. (1975). Approximate non-Gaussian filtering with linear state and observation relations. IEEE Trans. Automat. Control, 20, 107–110.

    Article  MATH  Google Scholar 

  • Meeden, G. and Isaacson, D. (1977). Approximate behavior of the posterior distribution for a large observation. Ann. Statist., 5, 899–908

    Article  MathSciNet  MATH  Google Scholar 

  • O’Hagan, A. (1981). A moment of indecision. Biometrika, 68, 329–330.

    Article  MathSciNet  Google Scholar 

  • Park, T. and Casella, G. (2008). The Bayesian lasso. J. Amer. Statist. Assoc., 103, 681–686.

    Article  MathSciNet  MATH  Google Scholar 

  • Pericchi, L.R. and Smith, A.F.M. (1992). Exact and approximate posterior moments for a normal location parameter. J. R. Stat. Soc. Ser. B, 54, 793–804.

    MathSciNet  MATH  Google Scholar 

  • Polson, N.G. (1991). A representation of the posterior mean for a location model. Biometrika, 78, 426–430.

    Article  MathSciNet  MATH  Google Scholar 

  • Raftery, A.E. (1995). Bayesian model selection in social research. Sociol. Methodol., 25, 111–163.

    Article  Google Scholar 

  • Sansó, B. and Pericchi, L.R. (1992). Near ignorance classes of log-concave priors for the location model. Test, 1, 39–46.

    Article  MathSciNet  Google Scholar 

  • Schuster, E.F. (1984). Classification of probability laws by tail behavior. J. Amer. Statist. Assoc., 79, 936–939.

    Article  MathSciNet  MATH  Google Scholar 

  • Subbotin, M.TH. (1923). On the law of frequency of error. Mat. Sb., 31, 296–301.

    MATH  Google Scholar 

  • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B, 58, 267–288.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JAN R. MAGNUS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

KUMAR, K., MAGNUS, J.R. A characterization of Bayesian robustness for a normal location parameter. Sankhya B 75, 216–237 (2013). https://doi.org/10.1007/s13571-013-0060-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13571-013-0060-9

Keywords and phrases.

AMS (2000) subject classification.

Navigation