Abstract
The abscopal effect is a rare phenomenon in radiation oncology where radiotherapy has a therapeutic effect at a distance from the intended treatment field. This effect has resulted in dramatic clinical responses in metastatic cancer patients. Despite clinical reports describing this phenomenon for over six decades, the abscopal effect is still not well understood. In this systematic review, we summarize and review the clinical and preclinical data that have investigated the mechanisms of this effect and consider the potential of exploiting its use in cancer care.
This is a preview of subscription content, access via your institution.
References
Delaney G, Jacob S, Featherstone C, Barton M (2005) The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104(6):1129–1137. doi:10.1002/cncr.21324
Mole RH (1953) Whole body irradiation; radiobiology or medicine? Br J Radiol 26(305):234–241
Byhardt RW, Brace KC, Wiernik PH (1975) The role of splenic irradiation in chronic lymphocytic leukemia. Cancer 35(6):1621–1625
Sawitsky A, Rai KR, Aral I, Silver RT, Glicksman AS, Carey RW, Scialla S, Cornell CJ Jr, Seligman B, Shapiro L (1976) Mediastinal irradiation for chronic lymphocytic leukemia. Am J Med 61(6):892–896
Nobler MP (1969) The abscopal effect in malignant lymphoma and its relationship to lymphocyte circulation. Radiology 93(2):410–412
Ehlers G, Fridman M (1973) Abscopal effect of radiation in papillary adenocarcinoma. Br J Radiol 46(543):220–222
Kingsley DP (1975) An interesting case of possible abscopal effect in malignant melanoma. Br J Radiol 48(574):863–866
Antoniades J, Brady LW, Lightfoot DA (1977) Lymphangiographic demonstration of the abscopal effect in patients with malignant lymphomas. Int J Radiat Oncol Biol Phys 2(1–2):141–147
Rees GJ (1981) Abscopal regression in lymphoma: a mechanism in common with total body irradiation? Clin Radiol 32(4):475–480
Robins HI, AuBuchon J, Varanasi VR, Weinstein AB (1981) The abscopal effect: demonstration in lymphomatous involvement of kidneys. Med Pediatr Oncol 9(5):473–476
Fairlamb DJ (1981) Spontaneous regression of metastases of renal cancer: a report of two cases including the first recorded regression following irradiation of a dominant metastasis and review of the world literature. Cancer 47(8):2102–2106
Rees GJ, Ross CM (1983) Abscopal regression following radiotherapy for adenocarcinoma. Br J Radiol 56(661):63–66. doi:10.1259/0007-1285-56-661-63
Mochizuki T, Takehara Y, Nishimura T, Takahashi M, Kaneko M (1991) Regression of hepatocellular carcinoma. AJR Am J Roentgenol 156(4):868–869. doi:10.2214/ajr.156.4.1848389
MacManus MP, Harte RJ, Stranex S (1994) Spontaneous regression of metastatic renal cell carcinoma following palliative irradiation of the primary tumour. Ir J Med Sci 163(10):461–463
Sham RL (1995) The abscopal effect and chronic lymphocytic leukemia. Am J Med 98(3):307–308
Ohba K, Omagari K, Nakamura T, Ikuno N, Saeki S, Matsuo I, Kinoshita H, Masuda J, Hazama H, Sakamoto I, Kohno S (1998) Abscopal regression of hepatocellular carcinoma after radiotherapy for bone metastasis. Gut 43(4):575–577
Nam SW, Han JY, Kim JI, Park SH, Cho SH, Han NI, Yang JM, Kim JK, Choi SW, Lee YS, Chung KW, Sun HS (2005) Spontaneous regression of a large hepatocellular carcinoma with skull metastasis. J Gastroenterol Hepatol 20(3):488–492. doi:10.1111/j.1440-1746.2005.03243.x
Takaya M, Niibe Y, Tsunoda S, Jobo T, Imai M, Kotani S, Unno N, Hayakawa K (2007) Abscopal effect of radiation on toruliform para-aortic lymph node metastases of advanced uterine cervical carcinoma-a case report. Anticancer Res 27(1B):499–503
Lakshmanagowda PB, Viswanath L, Thimmaiah N, Dasappa L, Supe SS, Kallur P (2009) Abscopal effect in a patient with chronic lymphocytic leukemia during radiation therapy: a case report. Cases J 2:204
Okuma K, Yamashita H, Niibe Y, Hayakawa K, Nakagawa K (2011) Abscopal effect of radiation on lung metastases of hepatocellular carcinoma: a case report. J Med Case Rep 5:111
Takeshima T, Chamoto K, Wakita D, Ohkuri T, Togashi Y, Shirato H, Kitamura H, Nishimura T (2010) Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Res 70(7):2697–2706. doi:10.1158/0008-5472
Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, Camphausen K, Luiten RM, de Ru AH, Neijssen J, Griekspoor A, Mesman E, Verreck FA, Spits H, Schlom J, van Veelen P, Neefjes JJ (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203(5):1259–1271
Reap EA, Roof K, Maynor K, Borrero M, Booker J, Cohen PL (1997) Radiation and stress-induced apoptosis: a role for Fas/Fas ligand interactions. Proc Natl Acad Sci U S A 94(11):5750–5755
Chakraborty M, Abrams SI, Camphausen K, Liu K, Scott T, Coleman CN, Hodge JW (2003) Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol 170(12):6338–6347
Ishihara H, Tsuneoka K, Dimchev AB, Shikita M (1993) Induction of the expression of the interleukin-1 beta gene in mouse spleen by ionizing radiation. Radiat Res 133(3):321–326
Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM (2008) Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol 180(5):3132–3139
Burnette BC, Liang H, Lee Y, Chlewicki L, Khodarev NN, Weichselbaum RR, Fu Y-X, Auh SL (2011) The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res 71(7):2488–2496
Camphausen K, Moses MA, Beecken WD, Khan MK, Folkman J, O’Reilly MS (2001) Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res 61(5):2207–2211
Chakraborty M, Abrams SI, Coleman CN, Camphausen K, Schlom J, Hodge JW (2004) External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res 64(12):4328–4337. doi:10.1158/0008-5472
Stewart CC, Perez CA (1976) Effect of irradiation on immune responses. Radiology 118(1):201–210. doi:10.1148/118.1.201
Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA (2013) Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13(11):759–771. doi:10.1038/nrc3611
Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059. doi:10.1038/nm1622
Ludgate CM (2012) Optimizing cancer treatments to induce an acute immune response: radiation abscopal effects, PAMPs, and DAMPs. Clin Cancer Res 18(17):4522–4525
Wunderlich R, Ernst A, Rodel F, Fietkau R, Ott O, Lauber K, Frey B, Gaipl US (2015) Low and moderate doses of ionizing radiation up to 2 Gy modulate transmigration and chemotaxis of activated macrophages, provoke an anti-inflammatory cytokine milieu, but do not impact upon viability and phagocytic function. Clin Exp Immunol 179(1):50–61. doi:10.1111/cei.12344
Formenti SC, Demaria S (2009) Systemic effects of local radiotherapy. Lancet Oncol 10(7):718–726
Stone HB, Peters LJ, Milas L (1979) Effect of host immune capability on radiocurability and subsequent transplantability of a murine fibrosarcoma. J Natl Cancer Inst 63(5):1229–1235
Lee Y, Auh SL, Wang Y, Burnette B, Wang Y, Meng Y, Beckett M, Sharma R, Chin R, Tu T, Weichselbaum RR, Fu Y-X (2009) Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 114(3):589–595
Dovedi SJ, Adlard AL, Lipowska-Bhalla G, McKenna C, Jones S, Cheadle EJ, Stratford IJ, Poon E, Morrow M, Stewart R, Jones H, Wilkinson RW, Honeychurch J, Illidge TM (2014) Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res 74(19):5458–5468
Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Allison JP, Formenti SC (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 11(2 Pt 1):728–734
Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, Formenti SC (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58(3):862–870
Camphausen K, Moses MA, Menard C, Sproull M, Beecken WD, Folkman J, O’Reilly MS (2003) Radiation abscopal antitumor effect is mediated through p53. Cancer Res 63(8):1990–1993
Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM (2005) Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 174(12):7516–7523
Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15(17):5379–5388
Tsai M-H, Cook JA, Chandramouli GVR, DeGraff W, Yan H, Zhao S, Coleman CN, Mitchell JB, Chuang EY (2007) Gene expression profiling of breast, prostate, and glioma cells following single versus fractionated doses of radiation. Cancer Res 67(8):3845–3852
Schaue D, Ratikan JA, Iwamoto KS, McBride WH (2012) Maximizing tumor immunity with fractionated radiation. Int J Radiat Oncol Biol Phys 83(4):1306–1310. doi:10.1016/j.ijrobp.2011.09.049
Verbrugge I, Hagekyriakou J, Sharp LL, Galli M, West A, McLaughlin NM, Duret H, Yagita H, Johnstone RW, Smyth MJ, Haynes NM (2012) Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory antibodies. Cancer Res 72(13):3163–3174. doi:10.1158/0008-5472
Lo SS, Fakiris AJ, Chang EL, Mayr NA, Wang JZ, Papiez L, Teh BS, McGarry RC, Cardenes HR, Timmerman RD (2010) Stereotactic body radiation therapy: a novel treatment modality. Nat Rev Clin Oncol 7(1):44–54. doi:10.1038/nrclinonc.2009.188
Wersall PJ, Blomgren H, Pisa P, Lax I, Kalkner KM, Svedman C (2006) Regression of non-irradiated metastases after extracranial stereotactic radiotherapy in metastatic renal cell carcinoma. Acta Oncol 45(4):493–497. doi:10.1080/02841860600604611
Nakanishi M, Chuma M, Hige S, Asaka M (2008) Abscopal effect on hepatocellular carcinoma. Am J Gastroenterol 103(5):1320–1321
Cotter SE, Dunn GP, Collins KM, Sahni D, Zukotynski KA, Hansen JL, O’Farrell DA, Ng AK, Devlin PM, Wang LC (2011) Abscopal effect in a patient with metastatic Merkel cell carcinoma following radiation therapy: potential role of induced antitumor immunity. Arch Dermatol 147(7):870–872
Ishiyama H, Teh BS, Ren H, Chiang S, Tann A, Blanco AI, Paulino AC, Amato R (2012) Spontaneous regression of thoracic metastases while progression of brain metastases after stereotactic radiosurgery and stereotactic body radiotherapy for metastatic renal cell carcinoma: abscopal effect prevented by the blood–brain barrier? Clin Genitourin Cancer 10(3):196–198
Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, Mu Z, Rasalan T, Adamow M, Ritter E, Sedrak C, Jungbluth AA, Chua R, Yang AS, Roman R-A, Rosner S, Benson B, Allison JP, Lesokhin AM, Gnjatic S, Wolchok JD (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366(10):925–931
Stamell EF, Wolchok JD, Gnjatic S, Lee NY, Brownell I (2013) The abscopal effect associated with a systemic anti-melanoma immune response. Int J Radiat Oncol Biol Phys 85(2):293–295
Hiniker SM, Chen DS, Knox SJ (2012) Abscopal effect in a patient with melanoma. N Engl J Med 366(21):2035, author reply 2035–2035; author reply 20362
Seung SK, Curti BD, Crittenden M, Walker E, Coffey T, Siebert JC, Miller W, Payne R, Glenn L, Bageac A, Urba WJ (2012) Phase 1 study of stereotactic body radiotherapy and interleukin-2-tumor and immunological responses. Sci Transl Med 4(137):137–174
Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC (2013) An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res 1(6):365–372
Siva S, Callahan J, MacManus MP, Martin O, Hicks RJ, Ball DL (2013) Abscopal [corrected] effects after conventional and stereotactic lung irradiation of non-small-cell lung cancer. J Thorac Oncol 8(8):e71–e72
Mikuriya S, Oh’ami H (1983) Radiotherapy and cellular infiltration of tumor nests. Radiat Med 1(3):248–254
Lange JR, Raubitschek AA, Pockaj BA, Spencer WF, Lotze MT, Topalian SL, Yang JC, Rosenberg SA (1992) A pilot study of the combination of interleukin-2-based immunotherapy and radiation therapy. J Immunother (1991) 12(4):265–271
Slovin SF, Higano CS, Hamid O, Tejwani S, Harzstark A, Alumkal JJ, Scher HI, Chin K, Gagnier P, McHenry MB, Beer TM (2013) Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol 24(7):1813–1821. doi:10.1093/annonc/mdt107
Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJ, Krainer M, Houede N, Santos R, Mahammedi H, Ng S, Maio M, Franke FA, Sundar S, Agarwal N, Bergman AM, Ciuleanu TE, Korbenfeld E, Sengelov L, Hansen S, Logothetis C, Beer TM, McHenry MB, Gagnier P, Liu D, Gerritsen WR (2014) Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 15(7):700–712. doi:10.1016/S1470-2045(14)70189-5
Sznol M, Chen L (2013) Antagonist antibodies to PD-1 and B7-H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res 19(5):1021–1034
Kwek SS, Cha E, Fong L (2012) Unmasking the immune recognition of prostate cancer with CTLA4 blockade. Nat Rev Cancer 12(4):289–297
Grimaldi AM, Simeone E, Giannarelli D, Muto P, Falivene S, Borzillo V, Giugliano FM, Sandomenico F, Petrillo A, Curvietto M, Esposito A, Paone M, Palla M, Palmieri G, Caraco C, Ciliberto G, Mozzillo N, Ascierto PA (2014) Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology 3:e28780. doi:10.4161/onci.28780
Park SS, Dong H, Liu X, Harrington SM, Krco CJ, Grams M, Mansfield AS, Furutani KM, Olivier KR, Kwon ED (2015) PD-1 restrains radiotherapy-induced abscopal effect. Cancer Immunol Res. 2326–6066. doi:10.1158/2326-6066.CIR-14-0138
Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, Fu Y-X (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124(2):687–695
Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J, Durham N, Meyer C, Harris TJ, Albesiano E, Pradilla G, Ford E, Wong J, Hammers HJ, Mathios D, Tyler B, Brem H, Tran PT, Pardoll D, Drake CG, Lim M (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86(2):343–349. doi:10.1016/j.ijrobp.2012.12.025
Smith EL, Zamarin D, Lesokhin AM (2014) Harnessing the immune system for cancer therapy. Curr Opin Oncol 26(6):600–607
Siva S, Macmanus MP, Martin RF, Martin OA (2015) Abscopal effects of radiation therapy: a clinical review for the radiobiologist. Cancer Lett 356(1):82–90
Hodge JW, Sharp HJ, Gameiro SR (2012) Abscopal regression of antigen disparate tumors by antigen cascade after systemic tumor vaccination in combination with local tumor radiation. Cancer Biother Radiopharm 27(1):12–22
Gulley JL, Arlen PM, Bastian A, Morin S, Marte J, Beetham P, Tsang KY, Yokokawa J, Hodge JW, Menard C, Camphausen K, Coleman CN, Sullivan F, Steinberg SM, Schlom J, Dahut W (2005) Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res 11(9):3353–3362. doi:10.1158/1078-0432.CCR-04-2062
Butterworth KT, McMahon SJ, Taggart LE, Prise KM (2013) Radiosensitization by gold nanoparticles: effective at megavoltage energies and potential role of oxidative stress. Transl Cancer Res 2(4):269–279
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
Albert C. Chen, E. Brian Butler, Simon S. Lo, and Bin S. Teh declare that they have no conflicts of interest.
Research involving human participants and/or animals
For this type of study, formal consent is not required. This article does not contain any studies with human participants or animals performed by any of the authors.
Rights and permissions
About this article
Cite this article
Chen, A.C., Butler, E.B., Lo, S.S. et al. Radiotherapy and the abscopal effect: insight from the past, present, and future. J Radiat Oncol 4, 321–330 (2015). https://doi.org/10.1007/s13566-015-0223-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13566-015-0223-6
Keywords
- Abscopal effect
- Radiotherapy
- Regression
- Immune modulation