Advertisement

Mineral grades: an important indicator for environmental impact of mineral exploitation

  • Michael PriesterEmail author
  • Magnus Ericsson
  • Peter Dolega
  • Olof Löf
Original Paper
  • 50 Downloads

Abstract

We have collected and analysed grade information for nine metals: copper, gold, iron, lead, manganese, nickel, PGM, tin, and zinc. Based on this analysis, we have developed a proposal of “grade classes”, i.e., what could be considered low-grade, average-grade, and high-grade deposits for all these metals. We discuss the implications of possible developments into the future of the grades of ores, from which these metals are extracted. A focus on high-grade deposits will naturally reduce the environmental impact of mining. For six metals (copper, gold, iron, nickel, PGM, and zinc), we have further analysed the volumes available for the 10% cohort of projects and operating mines with the highest grades. Three metals (iron, PGM, and zinc) show considerable volumes, between 15 and 20% of total metal content in resources in this high-grade percentile. Copper and gold have between 5 and 10% while nickel has only 1.7% in the highest 10% grade percentile.

Keywords

Ore grades Environmental impact Mineral availability Mineral deposits 

Notes

Acknowledgements

The authors like to thank two anonymous reviewers and Prof. Mario Schmidt from the Institute for Industrial Ecology INEC of the Hochschule Pforzheim, for his review and comments.

Supplementary material

References

  1. Angerer G, Hagelüken C, Thaurer RK, Buchholz P, Herzig P, Wellmer F-W, Gutzmer J, Littke R (2016) Rohstoffe für die Energieversorgung der Zukunft: Geologie – Märkte – Umwelteinflüsse (Schriftenreihe Energiesysteme der Zukunft), München 2016. http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Publikationen/Kooperationspublikationen/ESYS_Analyse_Rohstoffe_fuer_die_Energieversorgung.pdf. Accessed Dec 2018
  2. Berger VI, Singer DA, Bliss JD, Moring BC (2011) Ni-Co laterite deposits of the world - database and tonnage models. U.S. Geological Survey, RestonGoogle Scholar
  3. Birshan M, Decaix G, Ferreira N, Robinson H (2015) Is there hidden treasure in the mining industry? McKinsey. http://www.mckinsey.com/industries/metals-and-mining/our-insights/is-there-hidden-treasure-in-the-mining-industry. Accessed Dec 2018
  4. Calvo G, Mudd G, Valero A, Valero A (2016) Decreasing ore grades in global metallic mining: a theoretical issue or a global reality? Resources 5:36CrossRefGoogle Scholar
  5. Coulomb R, Dietz S, Godunova M, Nielsen TB (2015) Critical minerals today and in 2030: an analysis for OECD countries, OECD Working Papers, No 91Google Scholar
  6. Crowson P (2012) Some observations on copper yields and ore grades. Res Policy 37:59–72CrossRefGoogle Scholar
  7. Dehoust, G., Manhart, A., Möck, A., Kießling, L., Vogt, R., Kämper, C., Giegrich, J., Auberger, A., Priester, M., Rechlin, A., Dolega, P (2017) Erörterung ökologischer Grenzen der Primärrohstoffgewinnung und Entwicklung einer Methode zur Bewertung der ökologischen Rohstoffverfügbarkeit zur Weiterentwicklung des Kritikalitätskonzeptes (ÖkoRess I) – Teilbericht Bewertung ökologischer Gefährdungspotenziale bei der Primärgewinnung abiotischer Rohstoffe - Methode für einen standortbezogenen Ansatz, Umweltbundesamt, Dessau-RoßlauGoogle Scholar
  8. Drielsma JA, Russell-Vaccari A, Drnek T, Brady T, Weihed P, Mistry M, Simbor LP (2016) Mineral resources in life cycle impact assessment-defining the path forward. Int J Life Cycle Assess 21:85–105CrossRefGoogle Scholar
  9. EU Commission (2014) Report on critical raw materials for the EU. Report of the Ad hoc Working Group on defining critical raw materialsGoogle Scholar
  10. Gerst MD (2008) Revisiting the cumulative grade-tonnage relationship for major copper ore types economic. Geology 103(3):615–628Google Scholar
  11. Giurco D, Prior T, Mudd G, Mason L, Behrisch J (2010) Peak minerals in Australia. A review of changing impacts and benefits. prepared for CSIRO minerals down under flagship, by the Institute for Sustainable Futures (University of Technology, Sydney) and Department of Civil Engineering (Monash University)Google Scholar
  12. Graedel TE, Harper EM, Nassar NT, Nuss P, Reck BK (2015) Criticality of metals and metalloids. Proc Natl Acad Sci 112(14):4257–4262CrossRefGoogle Scholar
  13. Lee B, Preston F, Kooroshy J, Bailey R, Lahn G (2012) Resource Futures. A Chatham House Report. The Royal Institute of International Affairs. http://resourcesfutures.org/downloads/CHJ204_Resources_Futures_WEB_28.01.13.pdf. Accessed Dec 2018
  14. Manhart A, Vogt R, Priester M et al (2018) The environmental criticality of primary raw materials – a new methodology to assess global environmental hazard potentials of minerals and metals from mining. Miner Econ  https://doi.org/10.1007/s13563-018-0160-0
  15. Martin HL, Jen L-S (1988) Are ore grades declining? The Canadian experience1939–89. In: Tilton J (ed) World mineral exploration – trends and economic issues. Roderick Eggert and Hans LandsbergGoogle Scholar
  16. Montani C (2017) 28th Report Marble and stones in the world 2017, Aldus CarrraraGoogle Scholar
  17. Mudd G (2007) Global trends in gold mining towards quantifying environmental and resource sustainability. Resour Policy 32:42–56CrossRefGoogle Scholar
  18. Mudd G (2009) The sustainability of mining in Australia: key production trends and their environmental implications for the future. Research Report No RR5, Department of Civil Engineering, Monash University and Mineral Policy Institute, Revised - April 2009Google Scholar
  19. Mudd G (2010) The environmental sustainability of mining in Australia: key mega trends and constraints. Res Policy 35(2):98–115Google Scholar
  20. Mudd G (2012) Key trends in the resource sustainability of platinum group elements. Ore Geol Rev 46:106–117CrossRefGoogle Scholar
  21. Mudd GM (2014) The future of Yellowcake: a global assessment of uranium resources and mining. Sci Total Environ 472(2014):590–607Google Scholar
  22. Mudd G, Ward JM (2008) Will sustainability constraints cause ‘Peak Minerals’? Institute for Sustainable Water Resources/Department of Civil Engineering, Monash University, Melbourne. School of Chemistry, Physics & Earth Science, Flinders University, Adelaide. AustraliaGoogle Scholar
  23. Norgate TE, Jahanshahi S, Rankin WJ (2007) Assessing the environmental impact of metal production processes. J Clean Prod 15:838–848CrossRefGoogle Scholar
  24. Northey S, Haque N, Mudd G (2013) Using sustainability reporting to assess the environmental footprint of copper mining. J Clean Prod 40:118–128CrossRefGoogle Scholar
  25. Northey S, Mohr S, Mudd G, Weng Z, Giurco D (2014) Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour Conserv Recycl 83:190–201CrossRefGoogle Scholar
  26. Petrow OW, Michailow BK, Kimelmann SA, Ledowskich AA, Bawlow NN, Nezhenskii IA, Warobew JJ, Schatow WW, Kapina JS, Nikolaeva LL, Bespalow EW, Boiko MS, Wolkow AW, Sergeew AS, Parschikowa NW, Mirchalewskaja NW (2008) Mineral Resources of Russia (in Russian). Ministry of the Natural Resources of the Russian Federation (VSEGEI), St. Petersburg, p 302Google Scholar
  27. Priester M, Dolega P (2015) Bergbauliche Rohstoffe – Teilprojektbericht ÖkoRess. BerlinGoogle Scholar
  28. Prior T, Giurco D, Mudd G, Mason L, Behrisch J (2011) Resource depletion, peak minerals and the implications for sustainable resource management. Glob Environ Chang 22(3):577–587CrossRefGoogle Scholar
  29. Raw Materials Data Stockholm (2016) A computerised databaseGoogle Scholar
  30. Rötzer N, Schmidt M (2018) Sind Erzgehalte ein geeigneter Indikator für die Rohstoffverfügbarkeit? INEC, Pforzheim 2018 (draft, yet unpublished)Google Scholar
  31. Staal Y (2009) Prioritisation of metals regarding their environmental impact. Master thesis, Leiden University, Leiden, the Netherlands. Cited from UNEP (2010). Assessing the environmental impacts of consumption and production, priority products and materials, a report of the working group on the environmental impact of products and materials to the international panel for sustainable resource management. Hertwich, E., van der Voet, E., Suh, S., Tukker, A., Muriguchi, YGoogle Scholar
  32. STRADE (2016) Discussion during the STRADE project advisory board meeting, 1/2 September 2017, Brüssel, unpublished minutes from meeting. Project website www.stradeproject.eu
  33. Sverdrup HU, Ragnarsdottir K, Koca D (2015) An assessment of metal supply sustainability as an input to policy: Security of supply extraction rates, stocks-in-use, recycling, and risk of scarcity. J Clean Prod 140:359–372CrossRefGoogle Scholar
  34. Technical University Clausthal International mining copper, presentation by prof. H. Tudeshki without year.Google Scholar
  35. Umweltrat (2012) Deutscher Umweltrat: Umweltgutachten 2012Google Scholar
  36. U.S. DOE (2007) U.S. Department of Energy, Mining Industry Energy Bandwidth Study. BCS Incorporated, June 2007Google Scholar
  37. Weber (2015) Leopold Weber, Interpretation von Reserven- und Ressourcenangaben aus wirtschaftsgeologischer Sicht. BHM 160(2):71–78.  https://doi.org/10.1007/s00501-015-0347-4 © Springer-Verlag Wien 2015Google Scholar
  38. West (2011) West, J. Decreasing Metal Ore Grades. J Ind Ecol 15(2):165–168CrossRefGoogle Scholar
  39. Wellmer F-W, Scholz RW (2017) Peak Minerals: What can we learn from the history of mineral economics and the cases of gold and phosphorus? Miner Econ 30(2):73–95CrossRefGoogle Scholar

Literature for the statistics of ore grades (Gold)

  1. Bagby WC, Menzie WD, Mosier DL, Singer DA (1986) Grade and tonnage model carbonate-hosted Au-Ag. In: Cox DP, Singer DA (eds) Mineral deposit models: U.S. Geological Survey Bulletin 1693: 175ff. WashingtonGoogle Scholar
  2. Bliss JD (1986) Grade and tonnage model low-sulphide Au-quartz veins. In: Cox DP, Singer DA (eds) Mineral deposit models: U.S. Geological Survey Bulletin 1693: 239ff. WashingtonGoogle Scholar
  3. Desjardins J (2014) Global Gold Mine and Deposit Rankings 2013. http://www.visualcapitalist.com/global-gold-mine-and-deposit-rankings-2013. Accessed Dec 2018
  4. IFEU Datenbank (o.J.) (n.d.-a) AngloGold, Metorex, Goldfields, Newmont, Barrick, Newcrest, Polyus, Highland Gold, GoldcorpGoogle Scholar
  5. Mosier DL, Sato T (1986) Grade and tonnage model of Sado epithermal veins. In: Cox DP, Singer DA (eds) Mineral deposit models: U.S. Geological Survey Bulletin 1693: 155ff. WashingtonGoogle Scholar
  6. Mosier DL, Menzie WD (1986a) Grade and tonnage model of epithermal quartz-alunite Au. In: Cox DP, Singer DA (eds) Mineral deposit models: U.S. Geological Survey Bulletin 1693: 159ff. WashingtonGoogle Scholar
  7. Mosier DL, Menzie WD (1986b) Grade and tonnage model of Homestake Au. In: Cox DP, Singer DA (eds) Mineral deposit models: U.S. Geological Survey Bulletin 1693: 245ff. WashingtonGoogle Scholar
  8. Mosier DL, Sato T, Singer DA (1986a) Grade and tonnage model of Comstock epithermal veins. In: Cox DP, Singer DA (eds) Mineral deposit models: U.S. Geological Survey Bulletin 1693: 151ff. WashingtonGoogle Scholar
  9. Orris GJ, Bliss JD (1986) Grade and tonnage model of placer Au-PGE. In: Cox DP, Singer DA (eds) Mineral deposit models: U.S. Geological Survey Bulletin 1693: 261ff. WashingtonGoogle Scholar

Literature for the statistics of ore grades (Copper)

  1. Cox DP, Singer DA (2008) Descriptive and grade-tonnage models and database for Iron Oxide Cu-Au deposits. RestonGoogle Scholar
  2. Cox DP, Lindsey DA, Singer DA, Morig BC, Diggs MF (2007) Sediment-hosted copper deposits of the world: deposit models and database.Google Scholar
  3. IFEU Datenbank (n.d.-a) Codelco, FCX, Teck, BHP, RioTinto, Boliden, Lundin Mining, Imperial, Xstrata Grupo Mexico, Metorex, First Quantum, Hudbay Mining, Southern Peru, Katanga, ValeGoogle Scholar
  4. Mosier DL, Berger VI, Singer DA (2009) Volcanogenic massive sulfide deposits of the world—database and grade and tonnage modelsGoogle Scholar
  5. Singer DA (1986a) Grade and tonnage model of Besshi massive sulfide In: Cox DP, Singer DA (eds) Mineral deposit models: U.S. Geological Survey Bulletin 1693: 136ff. WashingtonGoogle Scholar
  6. Singer DA (1986b) Grade and tonnage model of porphyry Cu, skarn-related deposits. In: Cox, DP, Singer DA (eds) Mineral deposit models: U.S. Geological Survey Bulletin 1693: 82ff. WashingtonGoogle Scholar
  7. Singer DA, Mosier DL (1986a) Grade and tonnage model kuroko massive sulfide. In: Cox DP, Singer DA (eds) Mineral deposit models: U.S. Geological Survey Bulletin 1693: 190ff. WashingtonGoogle Scholar
  8. Singer DA, Mosier DL (1986b) Grade and tonnage model of Cyprus massive. In: Cox DP, Singer DA (eds) Mineral deposit models: U.S. Geological Survey Bulletin 1693: 131ff. Washington.Google Scholar
  9. Singer DA, Cox DP, Mosier DL (1986a) Grade and tonnage model of porphyry Cu-Mo. In: Cox DP, Singer DA (eds) Mineral deposit models: U.S. Geological Survey Bulletin 1693: 116ff. WashingtonGoogle Scholar
  10. Singer DA, Berger V, Morig BC (2008) Porphyry copper deposits of the world: database and grade and tonnage models. RestonGoogle Scholar

Literature for the statistics of ore grades (Zinc)

  1. IFEU Datenbank (o.J.) (n.d.-b) Buenaventura, BHP, Teck, Volcan, Boliden, Lundin Mining, Xstrata, Inmet, Penoles, Hudbay Mining, Grupo Mexico, KazzincGoogle Scholar
  2. Mosier DL (1986a) Grade and Tonnage Model of Zn-Pb Skarn Deposits. In: Cox DP, Singer DA (eds) Mineral deposit models: U.S. Geological Survey Bulletin 1693: 90ff. WashingtonGoogle Scholar
  3. Singer DA, Berger VI, Morig BC (2009) Sediment-hosted zinc-lead deposits of the world - database and grade and tonnage models. RestonGoogle Scholar

Literature for the statistics of ore grades (Lead)

  1. BGR (2012) Das mineralische Rohstoffpotenzial der russischen Arktis. Hannover. http://www.bgr.bund.de/DE/Gemeinsames/Produkte/Downloads/DERA_Rohstoffinformationen/rohstoffinformationen-04.pdf?__blob=publicationFile&v=8. Accessed 17 Sept 2015
  2. IFEU Datenbank (n.d.-b) El Brocal, Buenaventura, BHP, Hecla, PenolesGoogle Scholar
  3. Mosier DL (1986b) Grade and tonnage model of sandstone-hosted Pb-Zn. In: Cox DP, Singer DA (eds) Mineral deposit models: U.S. Geological Survey Bulletin 1693: 202ff. WashingtonGoogle Scholar
  4. Mosier DL, Morris HT, Singer DA (1986b) Grade and Tonnage Model of Polymetallic Replacement Deposits. In: Cox DP, Singer DA (eds) Mineral deposit models: U.S. Geological Survey Bulletin 1693: 101ff. WashingtonGoogle Scholar

Literature for the statistics of ore grades (Nickel)

  1. IFEU (n.d.) Vale, Xstrata, Lundin Mining, African Rainbow, Minara ResourcesGoogle Scholar
  2. Singer DA, Page NJ (1986) Grade and tonnage model of dunitic Ni-Cu. In: Cox DP, Singer DA (eds) Mineral deposit models: U.S. Geological Survey Bulletin 1693: 24ff. WashingtonGoogle Scholar
  3. Singer DA, Page NJ, Menzie WD (1986b) Grade and tonnage model of komatiitic Ni-Cu. In: Cox DP, Singer DA (eds) Mineral deposit models: U.S. Geological Survey Bulletin 1693: 18ff. WashingtonGoogle Scholar
  4. Singer DA, Page NJ, Menzie WD (1986c) Grade and tonnage model of synorogenic-synvolcanic Ni-Cu. In: Cox DP, Singer DA (eds) Mineral deposit models: U.S. Geological Survey Bulletin 1693: 28ff. WashingtonGoogle Scholar

Literature for the statistics of ore grades (Tin)

  1. Menzie WD, Reed BL (1992a) Grade and tonnage model of Sn greisen deposits. In: Cox DP, Singer DA (eds) Mineral deposit models, vol 1693. U.S. Geological Survey Bulletin, pp 71–72.Google Scholar
  2. Menzie WD, Reed BL (1992b) Grade and tonnage model of Sn skarn deposits. In: Cox DP, Singer DA (eds) Mineral deposit models, vol 1693. U.S. Geological Survey Bulletin, pp 58–60Google Scholar
  3. Singer DA, Mosier DL (1992) Grade and tonnage hodel of rhyolite-hosted Sn. In Cox DP, Singer DA (eds) Mineral deposit models, vol 1693. U.S. Geological Survey Bulletin, pp 169–171Google Scholar
  4. Menzie WD, Reed BL (1992c) Grade and tonnage model of Sn veins. In: Cox DP, Singer DA (Hg.) Mineral deposit models, vol 1693. U.S. Geological Survey Bulletin, pp 67–69Google Scholar

Literature for the statistics of ore grades (Iron)

  1. Cox DP (1992) Descriptive model of Fe skarn deposits. In: Cox DP, Singer DA (eds) Mineral deposit models, vol 1693. U.S. Geological Survey Bulletin, pp 94–97Google Scholar
  2. Mosier DL (1992a) Grade and tonnage model of volcanic-hosted magnetite. In: Cox DP, Singer DA (eds) Mineral deposit models, vol 1693. U.S. Geological Survey Bulletin, pp 172–174Google Scholar
  3. Mosier DL, Singer DA (1992) Grade and tonnage model of superior Fe and Algoma Fe deposits. In: Cox DP, Singer DA (eds) Mineral deposit models, vol 1693. U.S. Geological Survey Bulletin, pp 228–230Google Scholar

Literature for the statistics of ore grades (Manganese)

  1. Mosier DL (1992b) Descriptive model of replacement Mn. In: Cox DP, Singer DA (eds) Mineral deposit models, vol 1693. U.S. Geological Survey Bulletin, pp 105–107Google Scholar
  2. Mosier DL (1992c) Grade and tonnage model of volcanogenic Mn. In: Cox DP, Singer DA (eds) Mineral deposit models, vol 1693. U.S. Geological Survey Bulletin, pp 139–141Google Scholar
  3. Mosier DL (1992d) Grade and tonnage model of epithermal Mn. In: Cox DP, Singer DA (eds) Mineral deposit models, vol 1693. U.S. Geological Survey Bulletin, pp 166–167Google Scholar
  4. Mosier DL (1992e) Grade and tonnage model of sedimentary Mn. In: Cox DP, Singer DA (eds) Mineral deposit models, vol 1693. U.S. Geological Survey Bulletin, pp 231–233.Google Scholar
  5. BGS (2016): World mineral statistics data. Internet: https://www.bgs.ac.uk/mineralsuk/statistics/wms.cfc?method=searchWMS. Accessed 3 March 2017
  6. USGS (2017): Mineral Commodity Summaries 2017. Internet: https://minerals.usgs.gov/minerals/pubs/mcs/2017/mcs2017.pdf. Accessed 26 Sept 2017
  7. White, W.M. (2013): Geochemistry. Chichester. Wiley-BlackwellGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Michael Priester
    • 1
    Email author
  • Magnus Ericsson
    • 2
  • Peter Dolega
    • 3
  • Olof Löf
    • 4
  1. 1.Projekt-Consult GmbHHamburgGermany
  2. 2.Luleå University of Technology, ETS/EconomicsLuleåSweden
  3. 3.Öko-Institut e.V.DarmstadtGermany
  4. 4.RMG ConsultingTäbySweden

Personalised recommendations