Skip to main content

Peak minerals: What can we learn from the history of mineral economics and the cases of gold and phosphorus?

Abstract

The objective of this paper is to provide a conceptual and empirical historic analysis of applications, misunderstandings, and fallacies surrounding the Hubbert curve, the U-shaped production curve of a commodity, and peak minerals. We show that the ultimate recoverable resources (URR) cannot be predicted by fitting a symmetric curve to the data of past (historic) production for any commodity on a global scale. Without knowledge of the URR, it is not possible to determine the peak production time. For well-confined areas, in the case of a supply market, it might be possible today to construct a satisfactory Hubbert curve and to determine peak production. For phosphate, the case of Nauru Island is a good example, but so far, it is not possible for any commodity worldwide. URR comprise past production, presently known reserves, and future reserves developed from resources (known, but uneconomic at present) and parts of the geopotential (not yet known, but by geological reasoning and technological innovations, reserves can be expected to be discovered). The concept of reserves is a dynamic one, determined by economic conditions, technological developments, etc. The reserves of today can be the resources of tomorrow and vice versa. These factors also influence production curves. Therefore, it is not justified to interpret every peak as caused by geological constraints. In most cases so far, peak curves are demand driven and not at all influenced by geological availability. In only a very few cases (like the curve for the lower 48 states of the USA for oil by Hubbert in 1956 or gold production in South Africa), they are supply driven, i.e., true Hubbert curves. Gold showed four peaks in the twentieth century. Since gold mining is “money mining,” there is always a demand for gold. Therefore, the causes for the peak development must be economic ones with no influence of physical-production demand factors, purely supply factors—a model case to study. We also show how the kind of commodity, government regulations, technologies, and commodity prices influence U-shaped production curves. For phosphate, we show that a peak cannot be predicted with the present base of knowledge. We face a reserve-to-consumption ratio of higher than 300, which is higher than for every major commodity and at least 10 times the length of innovation cycles in the mineral industry. If we take the dynamic nature of reserves into account, we doubt that it is very meaningful to discuss the reliability of reserve and resource data. Instead, under the aspect of long-term future supply and a postulated right to know based on the universal right to feed oneself in dignity, the geopotential of phosphorus as the source of future reserves and resources should be regularly examined by an international scientific body.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Notes

  1. Unfortunately, in the international literature, the term “resources” is used with two meanings: resources without established economic viability (now called resources sensu stricto) and total resources comprising everything from reserves to geopotential, also meaning thus far unknown reserves and resources (sensu stricto).

  2. FOB means free on board a ship, normally exporting the product. In the following, we speak about both marketable phosphorus rock (PR-M) granulate with a concentration of about 30% P2O5 and phosphate rock (PR-Ore) with varying grades.

References

  • Aguilera RF, Eggert RG, Lagos CCG, Tilton JE (2012) Is depletion likely to create significant scarcities of future petroleum resources. In: Sinding-Larsen R, Wellme FW (eds) Non-renewable resource issues. Geoscientific and societal challenges, international year of the planet earth. Springer, Dordrecht, Heidelberg, pp 45–90

    Chapter  Google Scholar 

  • Andruleit H, Babies HG, Cramer B, Krüger M, Meßner J, Rempel H, Schlömer S, Schmidt S (2011) Konventionell versus nicht-konventionell: Weltweite Ressourcen und Entwicklungen des „Hoffnungsträgers“ Erdgas. DGMK-Proceedings Celle, 12.-13. April 2010

  • Arvidsson S (2016) Remote control and automation in Swedish iron ore mining. http://www2.brgm.fr/fichiers/revue_01/remote.pdf. Accessed 27.7.16

  • Bailly PA (1975) Minerals and energy from the public lands: an assessment of current conditions. In: Zaidlicz E, Nielsen GW (eds) Rocky Mountain Energy-Minerals Conference October, 15 and 16, 1975, Billings, MO, USA

  • Bannenberg N, Wagner H (2002) Geschichte der Montanindustrie im Saar-Lor-Lux-Raum. Erzmetall 55(12):678–687

    Google Scholar 

  • Bauer CW, Dunning CP (1979) Uraniferous phosphate resources of the Western Phosphatic Field. In: De Voto DH, Stevens DN (eds) Uraniferous phosphate resources, United States Department of Energy Publication GJBX-110 (79): 123–249, Grand Junction, CO

  • Bender F (1977) An earth scientist‘s view of metallic resources. In: Bender F (ed) The importance of the geosciences for the supply of mineral raw materials. Schweizerbart, Stuttgart, pp 117–136

    Google Scholar 

  • Bernstein PL (2000) The power of gold. Wiley, New York etc. 432 pp

  • Betechtin AG (1957) Lehrbuch der Speziellen Mineralogie. VEB Verlag Technik, Berlin. München (Porta), 685 pp

  • BGR (2015a) Energiestudie 2015, Reserven, Ressourcen und Verfügbarkeit von Energierohstoffen, Hannover 168 pp

  • BGR (2015b) Deutschland Rohstoffsituation 2014. Hannover 161 pp

  • BGR (2016) BGR databank

  • Binder HH (1999) Lexikon der chemischen Elemente: Das Periodensystem in Fakten, Zahlen und Daten. Hirzel, Stuttgart

    Google Scholar 

  • Brant AR (2007) Testing Hubbert. Energy Policy 35:3074–3088

    Article  Google Scholar 

  • Brant AR (2010) Review of mathematical models of future oil supply: historical overview and synthesizing critique. Energy 35(9):3958–3974

    Article  Google Scholar 

  • Bührer W (2001) 50 Jahre Düngemittelstatistik in Deutschland. Wirtschaft und Statistik. Statistisches Bundesamt Wiesbaden

  • Carlson WB (2012) World oil production via Hubbert linearization of production and normalizations of production. Energy Sources Part B-Economics Planning and Policy 7(2):162–168

    Article  Google Scholar 

  • CDU, CSU, SPD (Christlich Demokratische Union Deutschlands/Christlich-Soziale Union in Bayern/Sozialdemokratische Partei Deutschland) (2013) Deutschlands Zukunft gestalten (Coalition agreement between CDU, CSU und SPD, 18. Legislative period 6.12.2013). Berlin: Coalition parties of the Federal Government

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292–305

    Article  Google Scholar 

  • Cook PJ, Shergold JH (1986) Phosphate deposits of the world. Cambridge University Press, Cambridge

    Google Scholar 

  • David M (1977) Geostatistical ore reserve estimation, Developments in Geomathematics 2. Elsevier, Amsterdam, Oxford, New York

  • DERA Rohstoffinformation (2015) Rohstoffrisikobewertung-Platingruppenmetalle–Platin, Palladium, Rhodium. Hannover 155 pp

  • Déry P, Anderson B (2007) Peak phosphorus. Energy Bulletin (online), www.energybulletin.net/node/33164. Accessed 10.9.11

  • DeYoung JH Jr (1981) The Lasky tonnage-grade relationship: a reexamination. Econ Geol 76:1067–1080

    Article  Google Scholar 

  • Edixhoven JD, Gupta J, Savenije HHG (2014) Recent revisions of phosphate rock reserves and resources: a critique. Earth System Dynam 5:491–507

    Article  Google Scholar 

  • Egle L, Rechberger H, Zessner M (2015) Overview and description of technologies for recovering phosphorus from municipal wastewater. Resources Conservation & Recycling 105(B):325–346

    Article  Google Scholar 

  • Ericsson M, Söderholm P (2010) Mineral depletion and peak production (POLINARES (EU Policy in Natural Resources, working paper n.7, D1.1 – Report of Work package 1 “Framework for Understanding the Sources of Conflict and Tension”), 2010. URL: http://www.polinares.eu/docs/d1-1/polinares_wp1_peak_debates_minerals.pdf. Accessed 28 Oct 2014

  • ESYS (Energy systems of the future, a joint project of acatech—National Academy of Science and Engineering, German National Academy of Sciences Leopoldina, Union of the German Academies of Sciences and Humanities) (2016) Raw materials for the energy systems of the future—roads for a secure and sustainable supply with raw materials, position paper, in print

  • Folliet L (2011) Nauru—Die verwüstete Insel. Wagenbach, Berlin. 138 pp.

  • Gantner O (2015) Ressourcenstrategische Betrachtung der Kritikalität von Phosphor, PhD-thesis University of Augsburg, Aix-la-Chapelle (Shaker Verlag) 225 pp

  • Gordon RB, Bertram M, Graedel TE (2006) Metal stocks and sustainability. Proc Nat Acad Sci USA 103(5):1209–1214

    Article  Google Scholar 

  • Green T (2007) The ages of gold. GFMS Ltd, London. 480 pp

  • Green T (2012) Green’s historical gold price table http://www.nma.org/pdf/gold/his_gold_prices.pdf. Accessed 21. 8. 16

  • Heinberg R (2010) Peak everything: waking up to the century of decline in Earth’s resources. New Society Publishers, Gabriola Island, BC, Canada

    Google Scholar 

  • Hewett DF (1929). Cycles in metal production. American Institute of Mining and Metallurgical Engineers Technical Publication 183, Class A, No. 24: 3–31

  • Hubbert MK (1956a) Nuclear energy and fossil fuels. American Petrol. Inst. Drilling & Production Practice, Proc., spring meeting, San Antonio, Texas, pp 7–25

  • Hubbert MK (1956b) Nuclear energy and fossil fuels. Shell Development Company, Publication No. 95

  • Hukari S, Hermann L, Nattorp A (2016) From wastewater to fertilisers: technical overview and critical review of European legislation governing phosphorus recycling. Sci Total Environ 542:1127–1135

    Article  Google Scholar 

  • International Aluminium Institute (IAI) Recycling Indicators, 2014. URL: http://recycling.world-aluminium.org/en/review/recycling-indicators.html. Accessed 26 July 2016

  • Johnson Matthey (2014) PGM market report November 2014—forecast of platinum supply & demand in 2014, London UK, 32 pp

  • Kavalov B, Petevés SD (2007) The future of coal. Publication EU-General Direction JRC (Joint Research Center) EUR 22744 EN: 49 p., Petten (NL)

  • Kabbe C, Kraus F, Remy C (2015) Review of promising methods for phosphorus recovery and recycling from wastewater. International Fertiliser Society Proceedings 763:1–29

    Google Scholar 

  • Kernig CD (1998) Politik und Technologie---Energiewirtschaft im Spannungsfeld politischer Entscheidungen-- Paper German Section World Energy Council 56 pp

  • Koppelaar RHEM, Weikard HP (2013) Assessing phosphate rock depletion and phosphorus recycling options. Glob Environ Chang 23(6):1454–1466

    Article  Google Scholar 

  • Krige DG (1962) Statistical applications in mine valuation. J Inst Min Surv South Africa 61:231–224

    Google Scholar 

  • Laherrère JH (2000) Learn strengths, weakness to understand the Hubbert curve. Oil & Gas Journal 98(16):63–76

    Google Scholar 

  • Laherrère JH (2001) Estimates of oil reserves—paper EMF/IEA/IEW meeting IIASA, Laxenburg, Austria 19.6.2000. https://de.scribd.com/document/55367641/Estimates-of-Oil-Reserves. Accessed 23.7.16

  • Laherrère JH (2009) Peak gold, easier to model than peak oil? The oil drum. http://europe.theoildrum.com/node/5989. Accessed 31.8.16

  • Lasky SG (1950) How tonnage and grade relations help predict ore reserves. Eng Min J 151(4):81–85

    Google Scholar 

  • Limpert E, Stahel WA, Abbt M (2001) Log-normal distributions across the sciences: keys and clues. Bioscience 51:341–352

    Article  Google Scholar 

  • Marcuse H (2013) Historical dollar-to-marks currency conversion page. Retrieved from http://www.history.ucsb.edu/faculty/marcuse/projects/currency.htm. Accessed 31 Aug 2016

  • Massey FJ (1951) The Kolmogorov-Smirow test for goodness of fit. J Am Statistical Assoc 46(253):68–78. doi:10.2307/2280095

    Article  Google Scholar 

  • McKinsey & Company (2016) Is peak oil demand in sight? http://www.mckinsey.com/industries/oil-and-gas/our-insights/is-peak-oil-demand-in-sight. Accessed 28.7.16

  • Meadows PH, Meadows PL, Randers J, Behrens WW (1972) The limits to growth: a report for the Club of Rome’s project on the predicament of mankind. Universe books, New York. 176 pp

  • Mew MC (2016) Phosphate rock costs, prices and resources interaction. Sci Total Environ 542:1008–1012

    Article  Google Scholar 

  • Omang J (1977) Oil prophet cited: geologist saw crisis in 1948, Washington Post, November 15, 1977

  • Petzet S (2012) Phosphorrückgewinnung in der Abwassertechnik—Neue Verfahren für Klärschlamm und Klärschlammaschen. PhD-thesis Technical University of Darmstadt. Schriftenreihe IWAR 220

  • Phillips GN (2014) Why continued discovery is critical to sustained production. Bull. Australas. Institute Mining and Metallurgy No. 1, February 2014: 41–47

  • Priest T (2014) Hubbert’s peak: the great debate over the end of oil. Hist Stud Nat Sci 44(1):37–79

    Article  Google Scholar 

  • Raymond R (1984) Out of the fiery furnace: the impact of metals on the history of mankind. Macmillan, Melbourne. 274 pp

  • Regiowiki (2015) Graphit Kropfmühl GmbH. Regiowiki für Niederbayern und Altötting, 2015. URL: http://regiowiki.pnp.de/index.php/Graphit_Kropfm%C3%BChl_GmbH. Accessed 28 Sept 2015

  • Richter H (2011) Personal communication, September 13, 2011, Dresden, Germany

  • Rickmann D, Luvall JC, Shaw J, Mask P, Kissel D, Sullivan D (2003) Precision agriculture: changing the face of farming. Geotimes 1–5

  • Roodhardt L (2008) Prepare for the future, innovate! Soc. Petroleum Eng. Invited Lecture Series 2008

  • Rustad JR (2012) Peak nothing: recent trends in mineral resource production. Environ Sci Technol 46:1903–1906

    Article  Google Scholar 

  • Rustad JR (2016) Updating of the Hubbert linearization function for US oil and world oil production. Personal communication: Received 31.8.2016 by electronic mail

  • Rutledge D (2011) Estimating long-term world coal production with logit and probit transforms. Int J Coal Geology 85:23–33

    Article  Google Scholar 

  • Schodde RC (2012) Recent trends in copper exploration—are we finding enough? Paper: International Geological Congress IGC Brisbane, Australia, 5.-10. August 2012

  • Scholz RW, Wellmer FW (2013) Approaching a dynamic view on the availability of mineral resources: what we may learn from the case of phosphorus? Glob Environ Chang 23:11–27

    Article  Google Scholar 

  • Scholz RW,. Ulrich AE, Eilittä M,. Roy AH (2013) Sustainable use of phosphorus: a finite resource. Sci Total Environ 799–803

  • Scholz RW, Wellmer FW, DeYoung JH Jr (2014) Phosphorus losses in production processes before the “crude ore” and “marketable production” entries in reported statistics. In: Scholz RW, Roy AH, Brand FS, Hellums DT, Ulrich AE (eds) Sustainable phosphorus management—a global transdisciplinary roadmap. Springer, Dordrecht, Heidelberg etc

    Chapter  Google Scholar 

  • Scholz RW, Wellmer FW (2015) Losses and use efficiencies along the phophorus cycle. Part 1: Dilemmata and losses in the mines and other nodes of supply. Resour Conserv Recycl 105:216–234

    Article  Google Scholar 

  • Scholz RW, Wellmer FW (2016) Comment on: “Recent revisions of phosphate rock reserves and resources: a critique by Edixhoven et al. (2014)—clarifying comments and thoughts on key conceptions, conclusions and interpretation to allow for sustainable action.” Earth Syst Dynam 103–117

  • Schroeckh B (2016) From the Cottbus-Nord opencast mine to the “Cottbuser Ostsee”. World of Mining 68(4):219–229

    Google Scholar 

  • Sedlak RI (1991) Phosphorus and nitrogen removal from municipal wastewater: principles and practice, 2nd edn. Lewis Publishers, Boca Raton

    Google Scholar 

  • Sinding-Larsen R, Wellmer FW (2012) Non-renewable resource issue: geoscientific and societal challenges—an introduction. In: Sinding-Larsen R, Wellmer F-W (eds) Non-renewable resource issue: geoscientific and societal challenges. Springer, Berlin, Heidelberg, New York

    Chapter  Google Scholar 

  • Singer DA (2013) The lognormal distribution of metal resources in mineral deposits. Ore Geol Rev 55:80–86

    Article  Google Scholar 

  • Steiner G, Geissler B, Watson I, Mew M (2015) Efficiency development in phosphate rock mining over the last three decades. Resources Conservation & Recycling 105B:235–245

    Article  Google Scholar 

  • Stuermer M (2013a) 150 years of boom and bust: what drives mineral commodity prices. MPRA Working Paper

  • Stuermer M (2013b) Industrialization and the demand for mineral commodities. Bonn Econ Discussion Papers, 13/2013

  • Taylor HK (1972) General background theory of cut-off grades. Inst Min Metall Trans Sect A 81:A160–A179

    Google Scholar 

  • Tilton JE (2003) On borrowed time? Assessing the threat of mineral depletion. Washington, DC (Resources of the future) 158 pp

  • Tilton JE, Lagos G (2007) Assessing the long-run availability of copper. Resources Policy 32:19–23

    Article  Google Scholar 

  • Tilton JE, Guzmán JI (2016) Mineral economics and policy (Vol. Abington). RFF Press, Washington

    Book  Google Scholar 

  • UMTEC, AWEL (2009) Deponierelevante Eigenschaften von Klärschlammasche. Hochschule für Technik Rapperswil and Baudirektion Kanton Zürich, Rapperswil and Zurich

  • UNHR (1976) United Nations Human Rights Office of the High Commissioner: International Covenant on Economic, Social and cultural Rights of 3.1.1976. http://www.ohchr.org/EN/ProfessionalInterest/Pages/CESCR.aspx. Accessed 16.8.16

  • United Nations Framework Classification for Fossil Energy and Mineral Reserves and Resources (2009) ECA Energy Series No. 39 United Nations Economic Commission for Europe.http://www.unece.org/energy/se/unfc_2009.html. Accessed 10 July 2016

  • USGS (2015) US Geological Survey: mineral commodity summaries 2015, Washington, DC, 196 pp

  • USGS (2016) US Geological Survey: Mineral Commodity Summaries 2016, Washington, DC, 202 pp

  • USBM (1974) U.S. Bureau of Mines. The Bureau of Mines minerals availability system and resource classification manual. BuMines IC 8654, 199 pp

  • Vaccari DA, Strigul N (2011) Extracting phosphorus production to estimate resource reserves. Chemosphere 84:792–797

    Article  Google Scholar 

  • Watson I, van Straten P, Katz T, Botha L (2014) Mining and concentration: what mining to what costs and benefits. In: Scholz RW, Roy AH, Brand FS, Hellums DT, Ulrich AE (eds) Sustainable phosphorus management: a global transdisciplinary roadmap. Springer, Dordrecht, Heidelberg etc

    Google Scholar 

  • Weikard HP (2016) Phosphorus recycling and food security in the long run: a conceptual modelling approach. Food Security 8(2):405–414

    Article  Google Scholar 

  • Wellmer FW (2008) Reserves and resources of the geosphere, terms so often misunderstood. Is the life index of reserves of natural resources a guide to the future? Z dt Ges Geowiss 159/4:575–590

    Google Scholar 

  • Wellmer FW (2011) Rohstoffe für alle—wie lange? Proceedings Energie und Rohstoffe. 7.-10.9. 2011, Freiberg: 118–132

  • Wellmer FW (2014) Wie lange reichen unsere Rohstoffvorräte? –Was sind Reserven und Ressourcen. uwf- UmweltWirtschaftsForum 22(3):125–132

    Article  Google Scholar 

  • Wellmer FW, Berner U (1997) Factors useful for predicting future mineral-commodity supply trends. Geol Rundschau 86:311–321

    Article  Google Scholar 

  • Wellmer FW, Dalheimer M (1999) Trends und Perspektiven der Rohstoffversorgung Deutschlands im 21. Jahrhundert. - in: Slaby D, Brezinski H (Eds.) Rohstoffwirtschaft im Prozess der Transformation; Freiberger Forschungshefte 05 (Wirtschaftswissenschaften), pp 11–52

  • Wellmer FW, Steinbach V (2011) Is a road to sustainable use of non-renewable mineral raw materials possible? Proceedings Conference SDMI (Sustainable Development in the Minerals Industry), RWTH Aachen 14.-17.6.2011: 517–533

  • Wellmer FW, Dalheimer M (2012) The feedback control cycle as regulator of past and future mineral supply. Mineral Deposita 47:713–729

    Article  Google Scholar 

  • Wellmer FW, Scholz R (2015) The right to know the geopotential of minerals for ensuring food supply security—the case of phosphorus. J Industrial Ecology 19(1):3–5

    Article  Google Scholar 

  • Wellmer FW, Hagelüken C (2015) The feedback control cycle of mineral supply, increase of raw material efficiency, and sustainable development. Minerals 5:815–836

    Article  Google Scholar 

  • Westermann R (2016) The end of gold? Monetary metals studied at the planetary and human scale during the classical gold standard era. In: Boroy I, Schmelzer M (eds) History of the future of economic growth. Historical roots of current debates on sustainable degrowth. Rutledge, London in print

    Google Scholar 

  • World Wide Fund for Nature (WWF)/Ecofys (2014) Critical materials for the transition to a 100% sustainable energy future (WWF-Report), Gland, Schweiz: WWF International 2014. URL: http://www.ecofys.com/files/files/wwf-ecofys-2014-critical-materials-report.pdf. Accessed 10 July 2016

  • Yaksic A, Tilton JE (2009) Using the cumulative availability curve to assess the threat of mineral depletion: the case of lithium. Resources Policy 34:185–194

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank James R. Rustad for updating the Hubbert linearization function for US Oil and World Oil production, Elaine Ambrose for critically reading the paper and making numerous suggestions for improvements, and Bernhard Geissler, Doris Homberg-Heumann, Annegret Tallig, Sandro Schmidt, and Georg Wellmer for helping with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich -W. Wellmer.

Additional information

F.-W. Wellmer was the former president of the Federal Institute of Geosciences and Natural Resources

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wellmer, F.W., Scholz, R.W. Peak minerals: What can we learn from the history of mineral economics and the cases of gold and phosphorus?. Miner Econ 30, 73–93 (2017). https://doi.org/10.1007/s13563-016-0094-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13563-016-0094-3

Keywords

  • Peak minerals
  • Hubbert curves
  • Production curves
  • Ultimate recoverable resources (URR)
  • Reservers
  • Geopotential
  • Demand driven Hubbert curves
  • Supply driven Hubbert curves
  • Lasky's law
  • Feedback control cyle of mineral supply
  • Recycling outlook
  • Innovation cycles