Skip to main content
Log in

Low phytate soybean: next generation metabolic engineering using CRISPR-Cas 9 genome editing technology

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Next-generation metabolic engineering widens the possibility of using plants as biofactories for the mass production of metabolites. CRISPR/Cas9 system is the newest and the most widely adapted genome editing tool for metabolic engineering towards crop improvement. In this RNA guided approach, all sgRNAs are not equally efficient and it is essential to minimize the risk of using ineffective sgRNA producing undesired mutants. In this study, we designed two sgRNAs targeting the terminal step of phytate biosynthesis, GmIPK1- exon 6 (KS1) and 1 (KS2) and validated the efficiency using various in silico tools. We validated the functional efficiency of sgRNAs using AGRODATE (Agrobacterium mediated disc assay for transient expression) prior developing stable mutants. Combined statistical analysis of mutation rate in transient mutants revealed deletions i.e. KS1_sgRNA1 (76.4%) ranging from 1 to 7 nucleotides and insertions accounted for (23.4%) and in case of KS2_sgRNA2, 85.2% deletions were observed which ranged from 1 to 6 nucleotides, while insertions accounted for (13.2%). Sequence analysis of the amplified products revealed the presence of mutations in 12 of the 16 positive transgenic lines (75%). Phytate analysis of sgRNA1 knock-out mutants showed about a 6.6-fold reduction, while sgRNA2 knock-out mutant showed a 7.05-fold reduction in T0 stable soybean knock-out mutants. The strategy undertaken in this research is the first report of a highly effective CRISPR/Cas9 modification system using chimeric gRNA in DS9712 soybean cv., reinforces the importance of developing low phytate soybean with immense potential for food and feed industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AGRODATE:

Agrobacterium-Mediated disc assay for transient expression

BAP:

6-Benzylaminopurine

CRISPR/Cas9:

Clustered regularly interspaced short palindromic repeats

DSB:

Double strand breaks

EtBr:

Ethidium bromide

sgRNAs:

Single guide RNAs

HR:

Hypersensitive reaction

IBA:

Indole butyric acid

InDels:

Insertion or deletions

IPK1:

Inositol pentakisphosphate 2-kinase 1

LOF:

Loss of function

MFE:

Minimum free energy

MIPS:

myo-Inositol-3-phosphate synthase

NHEJ:

Non-homologous end joining

PA:

Phytic acid

PAM:

Proto-spacer adjacent motifs

PDA:

Photo diode array

TALENS:

Transcription activator-like endonucleases

ZFNs:

Zinc-finger nucleases

References

  • Ali N, Paul S, Gayen D, Sarkar SN, Datta K, Datta SK (2013) Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1, 3, 4, 5, 6-pentakisphosphate 2-kinase gene (IPK1). PLoS ONE 8:1–12

    Article  Google Scholar 

  • Bae S, Kweon J, Kim HS, Kim JS (2014) Microhomology-based choice of Cas9 nuclease target sites. Nat Methods 11:705–706

    Article  CAS  PubMed  Google Scholar 

  • Baltes NJ, Gil-Humanes J, Cermak T, Atkins PA, Voytas DF (2014) DNA replicons for plant genome engineering. Plant Cell 26:151–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B (2015) CRISPR/Cas9-mediated genome editing in soybean hairy roots. PLoS ONE 10:e0136064

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran JM, Brumin D, Wolf D, KlapLeibman C, Pearlsman M (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du H, Zeng X, Zhao M, Cui X, Wang Q, Yang H (2016) Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9. J Biotechnol 217:90–97

    Article  CAS  PubMed  Google Scholar 

  • Fan D, Liu T, Li C, Jiao B, Hou Y, Luol K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:12217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang DL, Wang Z (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA 111:4632–4637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fister AS, Landherr L, Maximova SN, Guiltinan MJ (2018) Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Front Plant Sci 9:268

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillman J, Pantalone V, Bilyeu K (2009) The low phytic acid phenotype in soybean line CX1834 is due to mutations in two homologs of the maize low phytic acid gene. Plant Genome 2:179–190

    Article  CAS  Google Scholar 

  • Hada A, Krishnan V, Punjabi M, Basak N, Pandey V, Jeevaraj T, Marathe A, Gupta AK, Jolly M, Kumar A, Dahuja A, Manickavasagam M, Ganapathi A, Sachdev A (2016) Refined glufosinate selection and its extent of exposure for improving the Agrobacterium-mediated transformation in Indian soybean (Glycine max) genotype JS-335. Plant Biotechnol 33:341–350

    Article  CAS  Google Scholar 

  • Hines PA, Agricola E, Llinares Garcia J, O’Dwyer L, Herold R (2022) Therapeutic genome editing: regulatory horizons. Nat Rev Drug Discovery 21(1):1–2

    Article  CAS  PubMed  Google Scholar 

  • Hitz W, Carlson TJ, Kerr PS, Sebastian SA (2002) Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol 128:650–660. https://doi.org/10.1104/pp.010585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:1

    Article  CAS  Google Scholar 

  • Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE 9:e93806

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013a) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013b) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur N, Alok A, Kaur N, Pandey P, Awasthi P, Tiwari S (2017) CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali Genome. Func Integr Genomics 18:89–99

    Article  Google Scholar 

  • Klimek-Chodacka M, Oleszkiewicz T, Lowder LG, Qi Y, Baranski R (2018) Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Rep 37:575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan V, Joshna J, Jolly M, Manickavasagam M, Praveen S, Sachdev A (2019a) ‘AGRODATE’: a rapid Agrobacterium-mediated transient expression tool for gene function analysis in leaf discs. J Plant Biochem Biotechnol. https://doi.org/10.1007/s13562-019-00536-w

    Article  Google Scholar 

  • Krishnan V, Gothwal S, Dahuja A, Vinutha T, Singh B, Jolly M, Praveen S, Sachdev A (2019b) Enhanced nutraceutical potential of gamma irradiated black soybean extracts. Food Chem 245:246–253

    Article  Google Scholar 

  • Kumar A, Kumar V, Krishnan V, Hada A, Marathe C, Parameswaran C, Jolly M, Sachdev A (2019) Seed targeted RNAi-mediated silencing of GmMIPS1 limits phytate accumulation and improves mineral bioavailability in soybean. Sci Rep 9:7744

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari S, Jolly M, Krishnan V, Dahuja A, Sachdev A (2012) Spatial and temporal expression analysis of d-myo-inositol 3-phosphate synthase (MIPS) gene family in Glycine max. Afr J Biotechnol 11(98):16443–16454

    CAS  Google Scholar 

  • Kuscu C, Arslan S, Singh R, Thorpe J, Adli M (2014) Genome-wide analysis reveals characteristics of off target sites bound by the Cas9 endonuclease. Nat Biotechnol 32:677–683

    Article  CAS  PubMed  Google Scholar 

  • Lawrenson T, Shorinola O, Stacey N, Li C, Stergaard L, Patron N, Uauy C, Li C (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Bak G, Choi Y, Chuang W, Cho H, Lee L (2008) Roles of phosphatidylinositol 3-kinase in root hair growth. Plant Physiol 147:624–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41:63–68

    Article  CAS  PubMed  Google Scholar 

  • Loewus FA, Murthy PPN (2000) myo-inositol metabolism in plants. Plant Sci 150:1–19

    Article  CAS  Google Scholar 

  • Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, Xie Y, Shen R, Chen S, Wang Z, Chen Y, Guo J, Chen L, Zhao X, Dong Z, Liu YG (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot Plants. Mol Plant 8:1274–1284

    Article  CAS  PubMed  Google Scholar 

  • Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, Van Der Oost J (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477

    Article  CAS  PubMed  Google Scholar 

  • Meltzer H, Marom E, Alyagor I et al (2019) Tissue-specific (ts) CRISPR as an efficient strategy for in vivo screening in Drosophila. Nat Commun 10:2113. https://doi.org/10.1038/s41467-019-10140-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michno J, Wang X, Liu J, Curtin SJ, Kono TJ, Stupar RM (2015) CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops Food 6:243–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakano M, Yamada T, Masuda Y, Sato Y, Kobayashi H, Ueda H, Morita R, Nishimura M, Kitamura K, Kusaba M (2014) A green-cotyledon/stay-green mutant exemplifies the ancient whole-genome duplications in soybean. Plant Cell Physiol 55:1763–1771

    Article  CAS  PubMed  Google Scholar 

  • Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693

    Article  CAS  PubMed  Google Scholar 

  • Nunes ACS, Vianna GR, Cuneo F, Amaya-Farfán J, de Capdeville G, Rech EL, Aragão FJL (2006) RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta 224:125–132

    Article  CAS  PubMed  Google Scholar 

  • Pandey V, Krishnan V, Basak N, Hada A, Punjabi M, Jolly M, Lal SK, Singh SB, Sachdev A (2016) Phytic acid dynamics during seed development and it’s composition in yellow and black Indian soybean (Glycine max L.) genotypes through a modified extraction and HPLC method. J Plant Biochem Biotechnol 25:367–374

    Article  CAS  Google Scholar 

  • Punjabi M, Bharadvaja N, Jolly M, Dahuja A, Sachdev A (2018) Development and evaluation of low phytic acid soybean by siRNA triggered seed specific silencing of inositol polyphosphate 6-/3-/5-kinase gene. Front Plant Sci 9:804

    Article  PubMed  PubMed Central  Google Scholar 

  • Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K, Garcha J, Winte S, Masson H, Inagaki S, Federici F (2014) Hairy root transformation using agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166:455–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sattar MN, Iqbal Z, Tahir MN, Shahid MS, Khurshid M, Al-Khateeb AA, Al-Khateeb SA (2017) CRISPR/Cas9: a practical approach in date palm genome editing. Front Plant Sci 8:1469

    Article  PubMed  PubMed Central  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR–Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Wang H, Schellin K, Li B, Faller M, Stoop JM, Meeley RB, Ertl DS, Ranch JP, Glassman K (2007) Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol 25:930–937

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Thompson M, Lin G, Butler H, Gao Z, Thornburgh S, Yau K, Smith DA, Shukla VK (2007) Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from maize: Molecular and biochemical characterization. Plant Physiol 144:1278–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y (2015) Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5:10342

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian S, Jiang L, Gao Q, Zhang J, Zong M, Zhang H, Ren Y, Guo S, Gong G, Liu F, Xu Y (2017) Efficient RISPR/Cas9 based gene knockout in watermelon. Plant Cell Rep 36:399–406

    Article  CAS  PubMed  Google Scholar 

  • Van der Hoorn RAL, Laurent F, Roth R, Wit PJD (2000) Agro infiltration is a versatile tool that facilitates analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. Mol Plant Microbe in 13:439–446

    Article  Google Scholar 

  • Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Sci 343:80–84

    Article  CAS  Google Scholar 

  • Wang S, Zhang S, Wang W, Xiong X, Meng F, Cui X (2015) Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep 34:1473–1476

    Article  CAS  PubMed  Google Scholar 

  • Wilcox JR, Premachandra GS, Young KA, Raboy V (2000) Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci 40:1601–1605. https://doi.org/10.2135/cropsci2000.4061601x

    Article  Google Scholar 

  • Wong N, Liu W, Wang X (2015) WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol 16:218

    Article  PubMed  PubMed Central  Google Scholar 

  • Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164

    Article  CAS  PubMed  Google Scholar 

  • Xie K, Yang Y (2013) RNA-guided genome editing in plants using a CRISPR–Cas system. Mol Plant 6:1975–1983

    Article  CAS  PubMed  Google Scholar 

  • Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J (2014) Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice (N.y) 7:5

    Article  PubMed  Google Scholar 

  • Yagiz A, Gurkok T, Zhang B, Unver T (2016) Manipulating the biosynthesis of bioactive compound alkaloids for next generation metabolic engineering in opium poppy using CRISPR-Cas9 genome editing technology. Sci Rep 6:30910

    Article  Google Scholar 

  • Zhou X, Jacobs TB, Xue LJ, Harding SA, Tsai CJ (2015) Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. New Phytol 208:298–301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank National Science Fund (NASF)–ICAR (RNAi/2001) for the grant and Grammarly (https://www.grammarly.com/) for the English language review.

Author information

Authors and Affiliations

Authors

Contributions

VK and AS conceived the idea. VK, M and AS designed the experiments. MJ performed transient transformation and VK performed stable transformation experiments. V assisted in bibliographic survey and HPLC analysis. AS provided critical feedback and shaped the manuscript. All authors discussed the results and contributed to the final manuscript.

Corresponding authors

Correspondence to Veda Krishnan or Archana Sachdev.

Ethics declarations

Conflict of interest

We confirm that there are no known conflicts of interest associated with this work and there has been no financial support that could have influenced its outcome.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1005 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, V., Jolly, M., T., V. et al. Low phytate soybean: next generation metabolic engineering using CRISPR-Cas 9 genome editing technology. J. Plant Biochem. Biotechnol. 32, 846–861 (2023). https://doi.org/10.1007/s13562-023-00845-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-023-00845-1

Keywords

Navigation