Skip to main content
Log in

Regulatory interactions in phytohormone stress signaling implying plants resistance and resilience mechanisms

  • Review Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the natural world, plants have to withstand and counteract stress havoc like biotic and abiotic stressors throughout their life cycle. To survive and perform vital biological processes, plants have evolved a variety of complex ways to detect environmental cues and respond appropriately. Phytohormones such as abscisic acid, salicylic acid, jasmonic acid, and ethylene, regulate plant defenses through synergistic and antagonistic actions. Cross-talk among these hormones enables the plant to utilize less energy for defense response and allocate it for growth and development. Crosstalk helps in prioritizing and optimizing the response according to the severity of specific stress. With the elucidation of important gene structure and functions through omics approaches and their experimental validation, functional mutant studies have revealed several unique and shared mechanisms involved in cross-talk between different signaling networks. In this review, we discuss how plant hormones coordinate with various signaling components such as transcription factors, signaling proteins, mitogen-activated protein kinase, and reactive oxygen species to orchestrate a fine balance of the primary and secondary stress responses during biotic and abiotic stress. Further, the emerging roles of novel molecules such as indoleamine serotonin, melatonin, methylglyoxal, spermine, etc. as moderators of cross-talk have been discussed. The final section of this article deals with the regulation of phytohormone networks by small RNAs and epigenetic regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

No datasets were generated or analyzed during the current study.

Abbreviations

ABA:

Abscisic acid

AUX:

Auxin

JA:

Jasmonic acid

SA:

Salicylic acid

CK:

Cytokinin

GA:

Gibberellin

BR:

Brassinosteroid

ET:

Ethylene

ROS:

Reactive oxygen species

MG:

Methylglyoxal

MT:

Melatonin

SRT:

Serotonin

SPR:

Spermine

MAPK:

Mitogen-activated protein kinases

NO:

Nitrous oxide

NADP:

Nicotinamide adenine dinucleotide phosphate

RBOH:

Respiratory burst oxidase homologs

RLKCW:

Receptor-like kinases

NBS-LLR:

Nucleotide-binding site leucine-rich repeat

HSP:

Heat shock proteins

R:

Proteins- Resistant proteins

SOD:

Superoxide dismutase

CAT:

Catalase

GPX:

Glutathione peroxidase

POD:

Mperoxidase

GST:

Glutathione-S-transferase

DAMPs:

Damage-Associated Molecular Patterns

PAMPs:

Pathogen-Associated Molecular Patterns

NPR:

Non-expressor of pathogenesis-related genes

ET:

Ethylene

IPT:

Isopentyltransferase

ABRE:

ABA Responsive Elements

EIN:

Ethylene Insensitive

EIL:

Ethylene Insensitive Like

ACS:

Aminocyclopropane-1-carboxylic acid synthase

ETR:

Ethylene Response

TIR:

Transport Inhibitor Response

AP2/ERF:

Apetala2/Ethylene Responsive Factor

CBF:

C motif-binding factor

JAZ:

Jasmonate ZIM-domain

PYL:

Pyrabactin Resistance1-Like protein

References

  • AbuQamar S, Luo H, Laluk K, Mickelbart MV, Mengiste T (2009) Cross-talk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. Plant J 58:347–360

    Article  CAS  PubMed  Google Scholar 

  • Adie BA, Pérez-Pérez J, Pérez-Pérez MM, Godoy M, Sánchez-Serrano JJ, Schmelz EA, Solano R (2007) ABA is an essential signal for plant resistance to pathogens affecting JA biosynthesis and the activation of defenses in Arabidopsis. Plant Cell 19:1665–1681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad HM, Ahmar S, Fiaz S, Azeem F, Shaheen T, Ijaz M, Bukhari SA, Khan SA, Mora-Poblete F (2021) Comparative Genomic Analysis of MYB Transcription Factors for Cuticular Wax Biosynthesis and Drought Stress Tolerance in Helianthus annuus L. Saudi J Biolog Sci. https://doi.org/10.1016/j.sjbs.2021.06.009

    Article  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Asselbergh B, De Vleesschauwer D, Höfte M (2008) Global switches and fine-tuning—ABA modulates plant pathogen defense. Mol Plant Microbe Interact 21:709–719

    Article  CAS  PubMed  Google Scholar 

  • Bai B, Shi B, Hou N, Cao Y, Meng Y, Bian H, Zhu M, Han N (2017) microRNAs participate in gene expression regulation and phytohormone cross-talk in barley embryo during seed development and germination. BMC Plant Biol 17:1–6

    Article  CAS  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Batth R, Jain M, Kumar A, Nagar P, Kumari S, Mustafiz A (2020) Zn2+ dependent glyoxalase I plays the major role in methylglyoxal detoxification and salinity stress tolerance in plants. PLoS ONE 15:e0233493. https://doi.org/10.1371/journal.pone.0233493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt D, Nath M, Sharma M, Bhatt MD, Bisht DS, Butani NV (2020) Role of growth regulators and phytohormones in overcoming environmental stress. In Protect. Chem. Agents Amelioration of Plant Abiotic Stress: Biochem. Mol Perspect. 22:254–279. https://doi.org/10.1002/9781119552154.ch11

    Article  CAS  Google Scholar 

  • Boba A, Kostyn K, Kozak B, Wojtasik W, Preisner M, Prescha A, Gola EM, Lysh D, Dudek B, Szopa J, Kulma A (2020) Fusarium oxysporum infection activates the plastidial branch of the terpenoid biosynthesis pathway in flax, leading to increased ABA synthesis. Planta 251:1–4

    Article  Google Scholar 

  • Bogoutdinova LR, Lazareva EM, Chaban IA, Kononenko NV, Dilovarova T, Khaliluev MR, Kurenina LV, Gulevich AA, Smirnova EA, Baranova EN (2020) Salt stress-induced structural changes are mitigated in transgenic tomato plants over-expressing superoxide dismutase. Biology 9:297. https://doi.org/10.3390/biology9090297

    Article  CAS  PubMed Central  Google Scholar 

  • Bostock RM (2005) Signal cross-talk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathology 43:545–580

    Article  CAS  Google Scholar 

  • Bostock RM, Pye MF, Roubtsova TV (2014) Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. Annu Rev Phytopathol 52:517–549

    Article  CAS  PubMed  Google Scholar 

  • Bouzroud S, Gouiaa S, Hu N, Bernadac A, Mila I, Bendaou N, Smouni A, Bouzayen M, Zouine M (2018) Auxin response factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). PLoS ONE 13:e0193517. https://doi.org/10.1371/journal.pone.0193517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bürger M, Chory J (2019) Stressed out about hormones: how plants orchestrate immunity. Cell Host Microbe 26:163–172. https://doi.org/10.1016/j.chom.2019.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao FY, Yoshioka K, Desveaux D (2011) The roles of ABA in plant–pathogen interactions. J Plant Res 124:489–499

    Article  CAS  PubMed  Google Scholar 

  • Cao FY, DeFalco TA, Moeder W, Li B, Gong Y, Liu XM, Taniguchi M, Lumba S, Toh S, Shan L, Ellis B (2018) Arabidopsis ETHYLENE RESPONSE FACTOR 8 (ERF8) has dual functions in ABA signaling and immunity. BMC Plant Biol 18:1–6. https://doi.org/10.1186/s12870-018-1402-6

    Article  CAS  Google Scholar 

  • Cao FY, Khan M, Taniguchi M, Mirmiran A, Moeder W, Lumba S, Yoshioka K, Desveaux D (2019) A host–pathogen interactome uncovers phytopathogenic strategies to manipulate plant ABA responses. Plant J 100:187–198

    Article  CAS  PubMed  Google Scholar 

  • Chang YN, Zhu C, Jiang J, Zhang H, Zhu JK, Duan CG (2020) Epigenetic regulation in plant abiotic stress responses. J Integr Plant Biol 62:563–580

    Article  CAS  PubMed  Google Scholar 

  • Chen CY, Lin PH, Chen KH, Cheng YS (2020a) Structural insights into Arabidopsis ethylene response factor 96 with an extended N-terminal binding to GCC box. Plant Mol Biol 104:483–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Honglei J, Xiaofeng W, Cong S, Xiao W, Peiyun M, Juan W, Meijuan R, Li J (2020b) Hydrogen sulfide positively regulates abscisic acid signaling through persulfidation of SnRK2. 6 in guard cells. Mol Plant 13:732–744

    Article  CAS  PubMed  Google Scholar 

  • Claeys H, De Bodt S, Inzé D (2014) Gibberellins and DELLAs: central nodes in growth regulatory networks. Trends Plant Sci 19:231–239

    Article  CAS  PubMed  Google Scholar 

  • Cui C, Wang JJ, Zhao JH, Fang YY, He XF, Guo HS, Duan CG (2020) A brassica miRNA regulates plant growth and immunity through distinct modes of action. Mol Plant 13:231–245. https://doi.org/10.1016/j.molp.2019.11.010

    Article  CAS  PubMed  Google Scholar 

  • Curaba J, Singh MB, Bhalla PL (2014) miRNAs in the cross-talk between phytohormone signaling pathways. J Exp Bot 65:1425–1438

    Article  CAS  PubMed  Google Scholar 

  • Deng GM, Zhang S, Yang QS, Gao HJ, Sheng O, Bi FC, Li CY, Dong T, Yi GJ, He WD, Hu CH (2021) MaMYB4, an R2R3-MYB repressor transcription factor, negatively regulates the biosynthesis of anthocyanin in banana. Front Plant Sci 11:2023. https://doi.org/10.3389/fpls.2020.600704

    Article  Google Scholar 

  • Devireddy AR, Zandalinas SI, Fichman Y, Mittler R (2021) Integration of reactive oxygen species and hormone signaling during abiotic stress. Plant J 105:459–476

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Wu C, Luo C, Wei M, Qu S, Wang S (2020) Overexpression of MdCPK1a gene, a calcium dependent protein kinase in apple, increase tobacco cold tolerance via scavenging ROS accumulation. PLoS ONE 15:e0242139. https://doi.org/10.1371/journal.pone.0242139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Yu, Chen X, Guo Y, Zhang X, Zhang H, Li F, Huang G, Meng Y, Shan W (2021) Phytophthora infestans RXLR effector PITG20303 targets a potato MKK1 protein to suppress plant immunity. New Phytol 229:501–515

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Van den Broeck L, Inzé D (2018) The pivotal role of ethylene in plant growth. Trends Plant Sci 23:311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Karpinska B, Krupinska K (2014) The functions of WHIRLY1 and REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 in cross tolerance responses in plants: a hypothesis. Philos Trans R Soc Lond B Biol Sci 369:20130226. https://doi.org/10.1098/rstb.2013.0226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu J, Wu Y, Miao Y, Xu Y, Zhao E, Wang J, Sun H, Liu Q, Xue Y, Xu Y, Hu T (2017) Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways. Sci Rep 7:1–1. https://doi.org/10.1038/srep39865

    Article  CAS  Google Scholar 

  • Fu ZW, Li JH, Feng YR, Yuan X, Lu YT (2021) The metabolite methylglyoxal-mediated gene expression is associated with histone methylglyoxalation. Nucleic Acids Res 49:1886–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Cross-talk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Ghosh S, Singh K, Shaw AK, Azahar I, Adhikari S, Ghosh U, Basu U, Roy S, Saha S, Sherpa AR, Hossain Z (2017) Insights into the miRNA-mediated response of maize leaf to arsenate stress. Environ Exp Bot 137:96–109

    Article  CAS  Google Scholar 

  • Gonzalez ME, Marco F, Minguet EG, Carrasco-Sorli P, Blázquez MA, Carbonell J, Ruiz OA, Pieckenstain FL (2011) Perturbation of spermine synthase gene expression and transcript profiling provide new insights on the role of the tetraamine spermine in Arabidopsis defense against Pseudomonas viridiflava. Plant Physiol 156:2266–2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Großkinsky Dominik K, van der Graaff E, Roitsch T (2016) Regulation of abiotic and biotic stress responses by plant hormones. Plant pathogen resistance biotechnology. Wiley, New Jersey, pp 131–147

    Chapter  Google Scholar 

  • Gu D, Yang J, Wu S, Liao Y, Zeng L, Yang Z (2021) Epigenetic regulation of the phytohormone abscisic acid accumulation under dehydration stress during postharvest processing of Tea (Camellia sinensis). J Agric Food Chem 69:1039–1048

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Li J, Zhang L, Zhang Z, He P, Wang W, Wang M, Wang A, Zhu J (2020) Heterotrimeric G-protein α subunit (LeGPA1) confers cold stress tolerance to processing tomato plants (Lycopersicon esculentum Mill). BMC Plant Biol 20:1–6

    Article  Google Scholar 

  • Gupta A, Hisano H, Hojo Y, Matsuura T, Ikeda Y, Mori IC, Senthil-Kumar M (2017) Global profiling of phytohormone dynamics during combined drought and pathogen stress in Arabidopsis thaliana reveals ABA and JA as major regulators. Sci Rep 7:1–3. https://doi.org/10.1038/s41598-017-03907-2

    Article  CAS  Google Scholar 

  • Haller E, Iven T, Feussner I, Stahl M, Fröhlich K, Löffelhardt B, Gust AA, Nürnberger T (2020) ABA-dependent salt stress tolerance attenuates Botrytis immunity in Arabidopsis. Front Plant Sci 11:594827. https://doi.org/10.3389/fpls.2020.594827

    Article  PubMed  PubMed Central  Google Scholar 

  • Han X, Kahmann R (2019) Manipulation of phytohormone pathways by effectors of filamentous plant pathogens. Front Plant Sci 10:822. https://doi.org/10.3389/fpls.2019.00822

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasan M, Skalicky M, Jahan MS, Hossain M, Anwar Z, Nie ZF, Alabdallah NM, Brestic M, Hejnak V, Fang XW (2021) Spermine: Its Emerging Role in Regulating Drought Stress Responses in Plants. Cells 10:261. https://doi.org/10.3390/cells10020261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Bhuyan MH, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, Fujita M, Fotopoulos V (2020) Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antioxidants 9:681. https://doi.org/10.3390/antiox9080681

    Article  CAS  PubMed Central  Google Scholar 

  • Hatmi S, Villaume S, Trotel-Aziz P, Barka EA, Clément C, Aziz A (2018) Osmotic stress and ABA affect immune response and susceptibility of grapevine berries to gray mold by priming polyamine accumulation. Front Plant Sci 9:1010. https://doi.org/10.3389/fpls.2018.01010

    Article  PubMed  PubMed Central  Google Scholar 

  • Hauvermale AL, Ariizumi T, Steber CM (2012) Gibberellin signaling: a theme and variations on DELLA repression. Plant Physiol 160:83–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He H, He LF (2020) Cross-talk between melatonin and nitric oxide in plant development and stress responses. Physiol Plant 170:218–226

    Article  CAS  PubMed  Google Scholar 

  • He J, Duan Y, Hua D, Fan G, Wang L, Liu Y, Chen Z, Han L, Qu LJ, Gong Z (2012) DEXH box RNA helicase–mediated mitochondrial reactive oxygen species production in Arabidopsis mediates cross-talk between abscisic acid and auxin signaling. Plant Cell 24:1815–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He X, Wang C, Wang H, Li L, Wang C (2020) The Function of MAPK cascades in response to various stresses in horticultural plants. Front. Plant Sci. 11:952. https://doi.org/10.3389/fpls.2020.00952

    Article  PubMed  PubMed Central  Google Scholar 

  • He H, Lei Y, Yi Z, Raza A, Zeng L, Yan L, Xiaoyu D, Yong C, Xiling Z (2021) Study on the mechanism of exogenous serotonin improving cold tolerance of rapeseed (Brassica napus L.) seedlings. Plant Growth Regul 94:161–170

    Article  CAS  Google Scholar 

  • Hoque TS, Hossain MA, Mostofa MG, Burritt DJ, Fujita M, Tran LS (2016) Methylglyoxal: an emerging signaling molecule in plant abiotic stress responses and tolerance. Front Plant Sci 7:1341. https://doi.org/10.3389/fpls.2016.01341

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou X, Lee LY, Xia K, Yan Y, Yu H (2010) DELLAs modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Wei C, Ma Q, Dong H, Shi K, Zhou Y, Foyer CH, Yu J (2021) Ethylene response factors 15 and 16 trigger jasmonate biosynthesis in tomato during herbivore resistance. Plant Physiol 185:1182–1197

    Article  CAS  PubMed  Google Scholar 

  • Ijaz R, Ejaz J, Gao S, Liu T, Imtiaz M, Ye Z, Wang T (2017) Overexpression of annexin gene AnnSp2, enhances drought and salt tolerance through modulation of ABA synthesis and scavenging ROS in tomato. Sci Rep 7:1–4. https://doi.org/10.1038/s41598-017-11168-2

    Article  CAS  Google Scholar 

  • Jaimes-Miranda F, Chávez Montes RA (2020) The plant MBF1 protein family: a bridge between stress and transcription. J Exp Bot 71:1782–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S, Leonhardt N (2009) MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci 06:20520–20525. https://doi.org/10.1073/pnas.0907205106

    Article  Google Scholar 

  • Jensen MK, Hagedorn PH, De Torres-Zabala M, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF (2008) Transcriptional regulation by an NAC (NAM–ATAF1, 2–CUC2) transcription factor attenuates ABA signaling for efficient basal defense towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J 56:867–880

    Article  CAS  PubMed  Google Scholar 

  • Jin Z, Xue S, Luo Y, Tian B, Fang H, Li H, Pei Y (2013) Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol Biochem 62:41–46

    Article  CAS  PubMed  Google Scholar 

  • Kazan K, Lyons R (2014) Intervention of phytohormone pathways by pathogen effectors. Plant Cell. 26(2285):2309. https://doi.org/10.1105/tpc.114.125419

    Article  CAS  Google Scholar 

  • Kazan K, Manners JM (2012) JAZ repressors and the orchestration of phytohormone cross-talk. Trends Plant Sci 17:22–31

    Article  CAS  PubMed  Google Scholar 

  • Kazan K, Manners JM (2013) MYC2: the master in action. Mol Plant 6:686–703

    Article  CAS  PubMed  Google Scholar 

  • Kharbech O, Massoud MB, Sakouhi L, Djebali W, Mur LA, Chaoui A (2020) Exogenous application of hydrogen sulfide reduces chromium toxicity in maize seedlings by suppressing NADPH oxidase activities and methylglyoxal accumulation. Plant Physiol Biochem 154:646–656

    Article  CAS  PubMed  Google Scholar 

  • Ku YS, Sintaha M, Cheung MY, Lam HM (2018) Plant hormone signaling cross-talks between biotic and abiotic stress responses. Int. J. Mol. Sci. 19:3206. https://doi.org/10.3390/ijms19103206

    Article  CAS  PubMed Central  Google Scholar 

  • Kumar P, Srivastava DK (2016) Biotechnological applications in in vitro plant regeneration studies of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Biotech Lett 38:561–571

    Article  CAS  Google Scholar 

  • Kumar A, Kumar R, Sengupta D, Das SN, Pandey MK, Bohra A, Sharma NK, Sinha P, Sk H, Ghazi IA, Laha GS (2020) Deployment of genetic and genomic tools toward gaining a better understanding of rice Xanthomonasoryzae pv. oryzae interactions for development of durable bacterial blight resistant rice. Frontiers in Plant Science 11:1152. https://doi.org/10.3389/fpls.2020.01152

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar RR, Dubey K, Arora K, Dalal M, Rai GK, Mishra D, Chaturvedi KK, Rai A, Kumar SN, Singh B, Chinnusamy V (2021) Characterizing the putative mitogen-activated protein kinase (MAPK) and their protective role in oxidative stress tolerance and carbon assimilation in wheat under terminal heat stress. Biotechnol. Rep 29:e00597. https://doi.org/10.1016/s1360-1385(01)02103-3

    Article  Google Scholar 

  • Lee K, Back K (2017) Overexpression of rice serotonin N-acetyltransferase 1 in transgenic rice plants confers resistance to cadmium and senescence and increases grain yield. J Pineal Res 62:e12392. https://doi.org/10.1111/jpi.12392

    Article  CAS  Google Scholar 

  • Leon-Reyes A, Spoel SH, De Lange ES, Abe H, Kobayashi M, Tsuda S, Millenaar FF, Welschen RA, Ritsema T, Pieterse CM (2009) Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling. Plant Physiol 149:1797–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Chang PP, Ghebremariam KM, Qin L, Liang Y (2014) Overexpression of tomato SpMPK3 gene in Arabidopsis enhances the osmotic tolerance. Biochem Biophys Res Commun 443:357–362

    Article  CAS  PubMed  Google Scholar 

  • Li N, Han X, Feng D, Yuan D, Huang LJ (2019) Signaling Cross-talk between Salicylic Acid and Ethylene/Jasmonate in plant defense: do we understand what they are whispering? Int. J. Mol. Sci. 20:671. https://doi.org/10.3390/ijms20030671

    Article  CAS  PubMed Central  Google Scholar 

  • Li T, Gonzalez N, Inzé D, Dubois M (2020) Emerging Connections between Small RNAs and Phytohormones. Trends in Plant Sci. 25:912–929. https://doi.org/10.1016/j.tplants.2020.04.004

    Article  CAS  Google Scholar 

  • Li Y, Chen X, Wang J, Zou G, Wang L, Li X (2020) Two responses to MeJA induction of R2R3-MYB transcription factors regulate flavonoid accumulation in Glycyrrhiza uralensis Fisch. PLoS One. https://doi.org/10.1371/journal.pone.0236565

    Article  PubMed  PubMed Central  Google Scholar 

  • Li T, Cheng X, Wang X, Li G, Wang B, Wang W, Zhang N, Han Y, Jiao B, Wang Y, Liu G (2021) Glyoxalase I-4 functions downstream of NAC72 to modulate downy mildew resistance in grapevine. Plant J. https://doi.org/10.1111/tpj.15447

    Article  PubMed  Google Scholar 

  • Lian C, Yao K, Duan H, Li Q, Liu C, Yin W, Xia X (2018) Exploration of ABA responsive miRNAs reveals a new hormone signaling cross-talk pathway regulating root growth of Populus euphratica. Int J Mol Sci 19:1481. https://doi.org/10.3390/ijms19051481

    Article  CAS  PubMed Central  Google Scholar 

  • Liu X, Hou X (2018) Antagonistic regulation of ABA and GA in metabolism and signaling pathways. Front Plant Sci 9:251. https://doi.org/10.3389/fpls.2018.00251

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Xue S (2021) Interplay between Hydrogen Sulfide and Other Signaling Molecules in the Regulation of Guard Cell Signaling and Abiotic/Biotic Stress Response. Plant Commun. 15:100179. https://doi.org/10.1016/j.xplc.2021.100179

    Article  Google Scholar 

  • Liu Y, Zhang S (2004) Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16:3386–3399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Yan S, Huang W, Yang J, Dong J, Zhang S, Zhao J, Yang T, Mao X, Zhu X, Liu B (2018) NAC transcription factor ONAC066 positively regulates disease resistance by suppressing the ABA signaling pathway in rice. Plant Mol Biol 98:289–302

    Article  CAS  PubMed  Google Scholar 

  • López-Galiano MJ, González-Hernández AI, Crespo-Salvador O, Rausell C, Real MD, Escamilla M, Camañes G, García-Agustín P, González-Bosch C, García-Robles I (2018) Epigenetic regulation of the expression of WRKY75 transcription factor in response to biotic and abiotic stresses in Solanaceae plants. Plant Cell Rep 37:167–176

    Article  PubMed  Google Scholar 

  • Lu HP, Luo T, Fu HW, Wang L, Tan YY, Huang JZ, Wang Q, Ye GY, Gatehouse AM, Lou YG, Shu QY (2018) Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis. Nature Plants 4:338–344

    Article  CAS  PubMed  Google Scholar 

  • Lu R, Liu Z, Shao Y, Sun F, Zhang Y, Cui J, Zhou Y, Shen W, Zhou T (2019) Melatonin is responsible for rice resistance to rice stripe virus infection through a nitric oxide-dependent pathway. Virology J. 16:1–8

    Article  Google Scholar 

  • Luo M, Gao Z, Li H, Li Q, Zhang C, Xu W, Song S, Ma C, Wang S (2018) Selection of reference genes for miRNA qRT-PCR under abiotic stress in grapevine. Sci Rep 8:1–1. https://doi.org/10.1038/s41598-018-22743-6

    Article  CAS  Google Scholar 

  • Luo J, Xia W, Cao P, Xiao Z, Zhang Y, Liu M, Zhan C, Wang N (2019) Integrated transcriptome analysis reveals plant hormones jasmonic acid and salicylic acid coordinate growth and defense responses upon fungal infection in poplar. Biomolecules 9:12. https://doi.org/10.3390/biom9010012

    Article  CAS  PubMed Central  Google Scholar 

  • Ma D, Ding H, Wang C, Qin H, Han Q, Hou J, Lu H, Xie Y, Guo T (2016) Alleviation of drought stress by hydrogen sulfide is partially related to the abscisic acid signaling pathway in wheat. PLoS ONE 11:e0163082. https://doi.org/10.1371/journal.pone.0163082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majláth I, Éva C, Tajti J, Khalil R, Elsayed N, Darko E, Szalai G, Janda T (2020) Exogenous methylglyoxal enhances the reactive aldehyde detoxification capability and frost-hardiness of wheat. Plant Physiol Biochem 149:75–85

    Article  PubMed  Google Scholar 

  • Maury S, Sow MD, Le Gac AL, Genitoni J, Lafon-Placette C, Mozgova I (2019) Phytohormone and chromatin crosstalk: the missing link for developmental plasticity? Front Plant Sci 10:395. https://doi.org/10.3389/fpls.2019.00395

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245–266

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Rahman MM, Siddiqui MN, Fujita M, Tran LS (2020) Salicylic acid antagonizes selenium phytotoxicity in rice: Selenium homeostasis, oxidative stress metabolism and methylglyoxal detoxification. Journal of Hazardous Materials 394:122572. https://doi.org/10.1016/j.jhazmat.2020.122572

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S (2018) Novel perspectives on the molecular crosstalk mechanisms of serotonin and melatonin in plants. Plant Physiol Biochem 132:33–45

    Article  CAS  PubMed  Google Scholar 

  • Müller LM, Harrison MJ (2019) Phytohormones, miRNAs, and peptide signals integrate plant phosphorus status with arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 50:132–139

    Article  PubMed  Google Scholar 

  • Murch SJ, Alan AR, Cao J, Saxena PK (2009) Melatonin and serotonin in flowers and fruits of Datura metel L. J Pineal Res 47:277–283

    Article  CAS  PubMed  Google Scholar 

  • Nahar K, Kyndt T, Nzogela YB, Gheysen G (2012) Abscisic acid interacts antagonistically with classical defense pathways in rice–migratory nematode interaction. New Phytol 196:901–913

    Article  CAS  PubMed  Google Scholar 

  • Nejat N, Mantri N (2017) Plant immune system: cross talk between responses to biotic and abiotic stresses the missing link in understanding plant defense. Curr Issues Mol Biol. https://doi.org/10.21775/cimb.023.001

    Article  PubMed  Google Scholar 

  • Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pardo-Hernández M, López-Delacalle M, Rivero RM (2020) ROS and NO regulation by melatonin under abiotic stress in plants. Antioxidants 9:1078. https://doi.org/10.3390/antiox9111078

    Article  CAS  PubMed Central  Google Scholar 

  • Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Pérez AC, Chico JM, Bossche RV, Sewell J, Gil E, Garcia-Casado G (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464:788–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelagio-Flores R, Ruiz-Herrera LF, López-Bucio J (2016) Serotonin modulates Arabidopsis root growth via changes in reactive oxygen species and jasmonic acid–ethylene signaling. Physiol Plant 158:92–105

    Article  CAS  PubMed  Google Scholar 

  • Peng H, Yang T, Ii WM (2014) Calmodulin gene expression in response to mechanical wounding and Botrytis cinerea infection in tomato fruit. Plants 3:427–441

    Article  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Science 15:395–401

    Article  CAS  Google Scholar 

  • Raja V, Majeed U, Kang H, Andrabi KI, John R (2017) Abiotic stress: Interplay between ROS, hormones and MAPKs. Environ Exp Bot 137:142–157

    Article  CAS  Google Scholar 

  • Rajwanshi R, Chakraborty S, Jayanandi K, Deb B, Lightfoot DA (2014) Orthologous plant microRNAs: microregulators with great potential for improving stress tolerance in plants. Theor Appl Genet 127:2525–2543

    Article  CAS  PubMed  Google Scholar 

  • Ramesh SV, Kumar RR, Praveen S (2020) Plant transcriptional regulation in modulating cross-tolerance to stress. In Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants Acad Press. https://doi.org/10.1016/B978-0-12-817892-8.00015-5

    Article  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone cross-talk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  • Sanchez L, Courteaux B, Hubert J, Kauffmann S, Renault JH, Clément C, Baillieul F, Dorey S (2012) Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. Plant Physiol 160:1630–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sha Yu, Wang J-W (2020) The Cross-talk between MicroRNAs and Gibberellin Signaling in Plants. Plant Cell Physiol 61:1880–1890

    Article  Google Scholar 

  • Sharma R, Annapurna S, Ragunathan D, Mukesh J (2014) Over-expression of a rice tau class glutathione s-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis. PLoS ONE 3:e92900. https://doi.org/10.1371/journal.pone.0092900

    Article  CAS  Google Scholar 

  • Shi J, Fu XZ, Peng T, Huang XS, Fan QJ, Liu JH (2010) Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiol 30:914–922

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Wang Z, Meng P, Tian S, Zhang X, Yang S (2013) The glutamate carboxypeptidase AMP 1 mediates abscisic acid and abiotic stress responses in Arabidopsis. New Phytol 199:135–150

    Article  CAS  PubMed  Google Scholar 

  • Shigenaga AM, Berens ML, Tsuda K, Argueso CT (2017) Towards engineering of hormonal cross-talk in plant immunity. Curr Opin Plant Biol 38:164–172. https://doi.org/10.1016/j.pbi.2017.04.021

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Roy S, Singh S, Das SS, Gautam V, Yadav S, Kumar A, Singh A, Samantha S, Sarkar AK (2017) Phytohormonal cross-talk modulates the expression of miR166/165s, target Class III HD-ZIPs, and KANADI genes during root growth in Arabidopsis thaliana. Sci Rep 13:1–3. https://doi.org/10.1038/s41598-017-03632-w

    Article  CAS  Google Scholar 

  • Sliwiak J, Sikorski M, Jaskolski M (2018) PR-10 proteins as potential mediators of melatonin-cytokinin cross-talk in plants: crystallographic studies of Ll PR-10.2 B isoform from yellow lupine. FEBS J 285:1907–1922

    Article  CAS  PubMed  Google Scholar 

  • Song G, Yuan S, Wen X, Xie Z, Lou L, Hu B, Cai Q, Xu B (2018) Transcriptome analysis of Cd-treated switchgrass root revealed novel transcripts and the importance of HSF/HSP network in switchgrass Cd tolerance. Plant Cell Rep 37:1485–1497

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Post-transcriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065. https://doi.org/10.1105/tpc.106.041673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Tiwari P, Yuvraj I, Chauhan AS, Singh P, Singh PK, Singh PC, Srivastava S, Pande V, Chakrabarty D (2020) Auxin-salicylic acid cross-talk ameliorates OsMYB–R1 mediated defense towards heavy metal, drought and fungal stress. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.122811

    Article  PubMed  Google Scholar 

  • Tiwari S, Gupta SC, Chauhan PS, Lata C (2021) An OsNAM gene plays important role in root rhizobacteria interaction in transgenic Arabidopsis through abiotic stress and phytohormone cross-talk. Plant Cell Rep 40:143–155

    Article  CAS  PubMed  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317

    Article  CAS  PubMed  Google Scholar 

  • Ulrich L, Schmitz J, Thurow C, Gatz C (2021) The jasmonoyl-isoleucine receptor CORONATINE INSENSITIVE1 suppresses defence gene expression in Arabidopsis roots independently of its ligand. Plant J. https://doi.org/10.1111/tpj.15372

    Article  PubMed  Google Scholar 

  • van Butselaar T, Van den Ackerveken G (2020) Salicylic acid steers the growth–immunity tradeoff. Trends Plant Sci 25:566–576

    Article  PubMed  Google Scholar 

  • Van Leeuwen H, Kliebenstein DJ, West MA, Kim K, Van Poecke R, Katagiri F, Michelmore RW, Doerge RW, DinaSt. Clair A (2007) Natural variation among Arabidopsis thaliana accessions for transcriptome response to exogenous salicylic acid. Plant Cell 19:2099–2110

    Article  PubMed  PubMed Central  Google Scholar 

  • Vendramin S, Huang J, Crisp PA, Madzima TF, McGinnis KM (2020) Epigenetic regulation of ABA-induced transcriptional responses in maize. G3: Genes. Genomes, Genetics 10:1727–1743

    CAS  Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16:86. https://doi.org/10.1186/s12870-016-0771-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlot AC, Dempsey DM, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Shang Y, Fan B, Yu JQ, Chen Z (2014) Arabidopsis LIP5, a positive regulator of multivesicular body biogenesis, is a critical target of pathogen-responsive MAPK cascade in plant basal defense. PLoS Pathology 10:e1004243. https://doi.org/10.1371/journal.ppat.1004243

    Article  CAS  Google Scholar 

  • Wang G, Zhang S, Ma X, Wang Y, Kong F, Meng Q (2016) A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. Physiol Plant 158:45–64

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang L, Yan Y, Zhang S, Li H, Gao Z, Wang C, Guo X (2020) GhWRKY21 regulates ABA-mediated drought tolerance by fine-tuning the expression of GhHAB in cotton. Plant Cell Rep. https://doi.org/10.1007/s00299-020-02590-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Y Wang du, Hou YJ et al (2015) Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Nat Acad Sci 112: 613–618

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. an update to the 2007 review in annals of botany. Ann Bot 111:1021–1058. https://doi.org/10.1093/aob/mct067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weeda S, Zhang N, Zhao X, Ndip G, Guo Y, Buck GA, Fu C, Ren S (2014) Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PloS one. 9:e93462

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Cheng H, Li X, Xiao J, Xu C, Wang S (2013) Rice WRKY13 regulates cross talk between abiotic and biotic stress signaling pathways by selective binding to different cis-elements. Plant Physiol 163:1868–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid–inducible mitogen-activated protein kinase. Plant Cell 15:745–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Zhang S (2015) Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2014.10.001

    Article  PubMed  Google Scholar 

  • Xu J, Audenaert K, Hofte M, De Vleesschauwer D (2013) Abscisic acid promotes susceptibility to the rice leaf blight pathogen Xanthomonas oryzae pv oryzae by suppressing salicylic acid-mediated defenses. PLoS One. 8:67413

    Article  Google Scholar 

  • Xu N, Chu Y, Chen H, Li X, Wu Q, Jin L, Wang G, Huang J (2018) Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA–mediated regulatory pathway and ROS scavenging. PLoS Genet 14:e1007662. https://doi.org/10.1371/journal.pgen.1007662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamuro C, Zhu JK, Yang Z (2016) Epigenetic modifications and plant hormone action. Mol Plant 9:57–70. https://doi.org/10.1016/j.molp.2015.10.008

    Article  CAS  PubMed  Google Scholar 

  • Yan F, Wei H, Li W, Liu Z, Tang S, Chen L, Ding C, Jiang Y, Ding Y, Li G (2020) Melatonin improves K+ and Na+ homeostasis in rice under salt stress by mediated nitric oxide. Ecotoxicol Environ Saf 206:111358. https://doi.org/10.1016/j.ecoenv.2020.111358

    Article  CAS  PubMed  Google Scholar 

  • Yang YX, Ahammed GJ, Wu C, Fan SY, Zhou YH (2015) Cross-talk among Jasmonate, Salicylate and Ethylene Signaling Pathways in Plant Disease and Immune Responses. Curr Protein and Pept Sci 16:450–61. https://doi.org/10.2174/1389203716666150330141638

    Article  CAS  Google Scholar 

  • Yang J, Duan G, Li C, Liu L, Han G, Zhang Y, Wang C (2019) The cross-talks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front in Plant Sci. 18(10):1349. https://doi.org/10.3389/fpls.2019.01349

    Article  Google Scholar 

  • Yin L, Wang P, Li M, Ke X, Li C, Liang D, Wu S, Ma X, Li C, Zou Y, Ma F (2013) Exogenous melatonin improves Malus resistance to Marssonina apple blotch. J Pineal Res 54:426–434

    Article  CAS  PubMed  Google Scholar 

  • Yu RM, Suo YY, Yang R, Chang YN, Tian T, Song YJ, Wang HJ, Wang C, Yang RJ, Liu HL, Gao G (2021) StMBF1c positively regulates disease resistance to Ralstonia solanacearum via its primary and secondary upregulation combining expression of StTPS5 and resistance marker genes in potato. Plant Sci 10:110877. https://doi.org/10.1016/j.plantsci.2021.110877

    Article  CAS  Google Scholar 

  • Yuan S, Huang Y, Liu S, Guan C, Cui X, Tian D, Zhang Y, Yang F (2016) RNA-seq analysis of overexpressing ovine AANAT gene of melatonin biosynthesis in switchgrass. Front Plant Sci 7:1289

    Article  PubMed  PubMed Central  Google Scholar 

  • Zanganeh R, Jamei R, Rahmani F (2019) Role of salicylic acid and hydrogen sulfide in promoting lead stress tolerance and regulating free amino acid composition in Zea mays L. Acta Physiol Plant 41:1–9

    Article  CAS  Google Scholar 

  • Zhang S, Zheng X, Reiter RJ, Feng S, Wang Y, Liu S, Jin L, Li Z, Datla R, Ren M (2017) Melatonin Attenuates Potato Late Blight by Disrupting Cell Growth, Stress Tolerance, Fungicide Susceptibility and Homeostasis of Gene Expression in Phytophthora infestans. Front Plant Sciences 8:1993. https://doi.org/10.3389/fpls.2017.01993

    Article  Google Scholar 

  • Zhao W, Li Z, Fan J, Hu C, Yang R, Qi X, Chen H, Zhao F, Wang S (2015) Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato. J Exp Bot 66:4653–4667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Chen L, Gu P, Zhan X, Zhang Y, Hou C, Wu Z, Wu YF, Wang QC (2019) Exogenous application of melatonin improves plant resistance to virus infection. Plant Pathol 68:1287–1295

    Article  CAS  Google Scholar 

  • Zhao D, Wang H, Chen S, Yu D, Reiter RJ (2020) Phytomelatonin: an emerging regulator of plant biotic stress resistance. Trends Plant Sci 26:70–82. https://doi.org/10.1016/j.tplants.2020.08.009

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Zhu C, Fu H, Li X, Chen L, Lin Y, Lai Z, Guo Y (2019) Genome-wide investigation of superoxide dismutase (SOD) gene family and their regulatory miRNAs reveal the involvement in abiotic stress and hormone response in tea plant (Camellia sinensis). PLoS ONE 14:e0223609. https://doi.org/10.1371/journal.pone.0223609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Meng X, Cai J, Li G, Dong T, Li Z (2018) Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biol. 18:83. https://doi.org/10.1186/s12870-018-1299-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu D, Chang Y, Pei T, Zhang X, Liu L, Li Y, Zhuang J, Yang H, Qin F, Song C, Ren D (2020) MAPK-like protein 1 positively regulates maize seedling drought sensitivity by suppressing ABA biosynthesis. Plant J 102:747–760

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Zhang N, Liu X, Li S, Yang J, Hong X, Wang F, Si H (2021) Mitogen-activated protein kinase 11 (MAPK11) maintains growth and photosynthesis of potato plant under drought condition. Plant Cell Rep 40:491–506

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The senior author, PK thankfully acknowledges his Ph.D. mentor Professor Dinesh Kumar Srivastava (Dr. YSP UHF, Solan) and PDF mentors; Professor Asis Datta (NIPGR, New Delhi) and Dr. Sanjay Kumar (CSIR-IHBT- Palampur) for their guidance and support. AK is thankful to SERB, GOI, for funding his research through Ramanujan Fellowship (SB/S2/RJN-022/2017).

Author information

Authors and Affiliations

Authors

Contributions

PK- conceived the idea; PK & BK- designed the article; BK & PK- literature mining and wrote the draft manuscript; BK, PK, RS & AK-reviewed and edited the manuscript; All the authors have read and approved the manuscript.

Corresponding author

Correspondence to Pankaj Kumar.

Ethics declarations

Conflict of interest

The authors declared that they have no competing interests concerning the work reported in this review article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, B., Kumar, P., Sharma, R. et al. Regulatory interactions in phytohormone stress signaling implying plants resistance and resilience mechanisms. J. Plant Biochem. Biotechnol. 30, 813–828 (2021). https://doi.org/10.1007/s13562-021-00739-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-021-00739-0

Keywords

Navigation