Skip to main content
Log in

Role of WRKY transcription factors in plant defense against lepidopteran insect herbivores: an overview

  • Review Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript


Plants, in nature are challenged by various environmental stresses (both biotic and abiotic), which distort the plant growth, development and crop yield. A wide range of insect herbivores attack plants across the globe, throughout the year, causing huge loss to the productivity of crop species. Being sessile, the plants respond to the crisis using a wide range of defense responsive elements which at the transcriptional level, includes the transcription factors, like WRKY, NAC, AP2/ERF, MYB, MYC, bZIP, bHLH and others. Increasing evidences suggest a pivotal role of WRKY TFs in the regulation of plant defense response against herbivory in Arabidopsis and other important crop plants. Unlike pathogenic attack, very limited information is available on the role of different WRKYs in herbivore-plant interaction. In this review, we will thus majorly focus on the role of WRKY transcription factors and its regulation in response to herbivore attack while summarizing the recent developments from the field of transcriptional, post-transcriptional and epigenetic regulation of WRKYs in response to herbivory attack with the prospects for future implementation in research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others



Arabidopsis Transcription Factor Database


Benzyl Isoquinoline Alkaloids


Basic Leucine Zipper


Chromatin Assembly Factor-1


CalModulin-Binding Domain


Coronatine-insensitive protein 1


Damage Associated Molecular Patterns


DNA Binding Domains


Divinyl Ethyl Synthase

DOX1 :

α-dioxygenase 1


Ethylene Response Factor




Effector Triggered Immunity


Flowering locus D


Flagellin-Sensitive 2




Herbivory Associated Molecular Patterns


Jasmonic Acid




Jasmonate-Associated VQ motif gene 1


Jasmonate ZIM-Domain


JAV1-JAZ8-WRKY51 complex

LoxD :

Lipoxygenase D


Transcription Factors with MADS domain


Mitogen Activated Protein Kinase


Mitogen Activated Protein Kinase Kinase


MEK Kinase


MAP Kinase 4 Substrate 1


NAM, ATAF and CUC family of transcription factors


Nonexpresser of PR1 gene

PR2 :

Pathogenesis-related protein2


Pattern Recognition Receptors

R gene:

Resistance gene


RNA-directed DNA methylation


Salicylic Acid


Systemic Acquired Resistance


Salicylic acid Induced Protein Kinase


The Arabidopsis Information Resource


Transcription Factors


Transcription start sites


Virus Induced Gene Silencing


Wound Induced Protein Kinase


Transcription factors with WRKYGQK motif


Zinc Finger Proteins


  • Akagi A, Fukushima S, Okada K, Jiang C-J, Yoshida R, Nakayama A, Shimono M, Sugano S, Yamane H, Takatsuji H (2014) WRKY45-dependent priming of diterpenoid phytoalexin biosynthesis in rice and the role of cytokinin in triggering the reaction. Plant Mol Biol 86:171–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez ME, Nota F, Cambiagno DA (2010) Epigenetic control of plant immunity. Mol Plant Pathol 11:563–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andolfo G, Ercolano MR (2015) Plant innate immunity multicomponent model. Front Plant Sci 6:987

    Article  PubMed  PubMed Central  Google Scholar 

  • Andreasson E, Jenkins T, Brodersen P, Thorgrimsen S, Petersen NH, Zhu S, Qiu JL, Micheelsen P, Rocher A, Petersen M (2005) The MAP kinase substrate MKS1 is a regulator of plant defense responses. EMBO J 24:2579–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakshi M, Oelmüller R (2014) WRKY transcription factors: Jack of many trades in plants. Plant Signaling Behav 9:e27700

    Article  CAS  Google Scholar 

  • Birkenbihl RP, Liu S, Somssich IE (2017) Transcriptional events defining plant immune responses. Curr Opin Plant Biol 38:1–9

    Article  CAS  PubMed  Google Scholar 

  • Bonaventure G, VanDoorn A, Baldwin IT (2011) Herbivore-associated elicitors: FAC signaling and metabolism. Trends Plant Sci 16:294–299

    Article  CAS  PubMed  Google Scholar 

  • Bouché N, Yellin A, Snedden WA, Fromm H (2005) Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol 56:435–466

    Article  PubMed  Google Scholar 

  • Choi HW, Klessig DF (2016) DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biol 16:232

    Article  PubMed  PubMed Central  Google Scholar 

  • Crespo-Salvador Ó, Escamilla-Aguilar M, López-Cruz J, López-Rodas G, González-Bosch C (2018) Determination of histone epigenetic marks in Arabidopsis and tomato genes in the early response to Botrytis cinerea. Plant Cell Rep 37:153–166

    Article  CAS  PubMed  Google Scholar 

  • Delessert C, Wilson I, Van Der Straeten D, Dennis E, Dolferus R (2004) Spatial and temporal analysis of the local response to wounding. Plant Mol Biol 55:165–181

    Article  CAS  PubMed  Google Scholar 

  • Ding B, Wang G-L (2015) Chromatin versus pathogens: the function of epigenetics in plant immunity. Front Plant Sci 6:675

    Article  PubMed  PubMed Central  Google Scholar 

  • Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19:2225–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eulgem T (2006) Dissecting the WRKY web of plant defense regulators. PLoS Pathog 2:e126

    Article  PubMed  PubMed Central  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Calvo P, Chini A, Fernández-Barbero G, Chico J-M, Gimenez-Ibanez S, Geerinck J, Eeckhout D, Schweizer F, Godoy M, Franco-Zorrilla JM (2011) The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. Plant Cell 23:701–715

    Article  PubMed  PubMed Central  Google Scholar 

  • Finatto T, Viana VE, Woyann LG, Busanello C, Maia LCd, Oliveira ACd (2018) Can WRKY transcription factors help plants to overcome environmental challenges? Genet Mol Biol 41:533–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Bi W, Li H, Wu J, Yu X, Liu D, Wang X (2018) WRKY transcription factors associated with NPR1-mediated acquired resistance in barley are potential resources to improve wheat resistance to Puccinia triticina. Front Plant Sci 9:1486

    Article  PubMed  PubMed Central  Google Scholar 

  • Göhre V, Jones AM, Sklenář J, Robatzek S, Weber AP (2012) Molecular crosstalk between PAMP-triggered immunity and photosynthesis. Mol Plant Microbe Interact 25:1083–1092

    Article  PubMed  Google Scholar 

  • Grunewald W, Karimi M, Wieczorek K, Van de Cappelle E, Wischnitzki E, Grundler F, Inzé D, Beeckman T, Gheysen G (2008) A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes. Plant Physiol 148:358–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S, Mishra VK, Kumari S, Chand R, Varadwaj PK (2019) Deciphering genome-wide WRKY gene family of Triticum aestivum L. and their functional role in response to Abiotic stress. Genes & Genomics 41:79–94

    Article  CAS  Google Scholar 

  • Hara K, Yagi M, Kusano T, Sano H (2000) Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Mol Gen Genet MGG 263:30–37

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Ye M, Li R, Zhang T, Zhou G, Wang Q, Lu J, Lou Y (2015) The rice transcription factor WRKY53 suppresses herbivore-induced defenses by acting as a negative feedback modulator of mitogen-activated protein kinase activity. Plant Physiol 169:2907–2921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu P, Zhou W, Cheng Z, Fan M, Wang L, Xie D (2013) JAV1 controls jasmonate-regulated plant defense. Mol Cell 50:504–515

    Article  CAS  PubMed  Google Scholar 

  • Ishihama N, Yamada R, Yoshioka M, Katou S, Yoshioka H (2011) Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response. Plant Cell 23:1153–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Journot-Catalino N, Somssich IE, Roby D, Kroj T (2006) The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18:3289–3302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CY, Zhang S (2004) Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco. Plant J 38:142–151

    Article  CAS  PubMed  Google Scholar 

  • Knoth C, Ringler J, Dangl JL, Eulgem T (2007) Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Mol Plant Microbe Interact 20:120–128

    Article  CAS  PubMed  Google Scholar 

  • Kundu P, Sahu R (2021) GIGANTEA confers susceptibility to plants during spot blotch attack by regulating salicylic acid signalling pathway. Plant Physiol Biochem

  • Li J, Brader G, Kariola T, Tapio PE (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477–491

    Article  CAS  PubMed  Google Scholar 

  • Li J, Liu X, Wang Q, Huangfu J, Schuman MC, Lou Y (2019) A group D MAPK protects plants from autotoxicity by suppressing herbivore-induced defense signaling. Plant Physiol 179:1386–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Zhang J, Li J, Zhou G, Wang Q, Bian W, Erb M, Lou Y (2015) Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores. Elife 4:e04805

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Galiano MJ, González-Hernández AI, Crespo-Salvador O, Rausell C, Real MD, Escamilla M, Camañes G, García-Agustín P, González-Bosch C, García-Robles I (2018) Epigenetic regulation of the expression of WRKY75 transcription factor in response to biotic and abiotic stresses in Solanaceae plants. Plant Cell Rep 37:167–176

    Article  PubMed  Google Scholar 

  • Mao P, Duan M, Wei C, Li Y (2007) WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression.

  • Meena MK, Prajapati R, Krishna D, Divakaran K, Pandey Y, Reichelt M, Mathew M, Boland W, Mithöfer A, Vadassery J (2019) The Ca2+ Channel CNGC19 Regulates Arabidopsis defense against Spodoptera Herbivory. The Plant Cell, Tpc 00057:02019

    Google Scholar 

  • Meraj TA, Fu J, Raza MA, Zhu C, Shen Q, Xu D, Wang Q (2020) Transcriptional Factors Regulate Plant Stress Responses Through Mediating Secondary Metabolism. Genes 11:346

    Article  CAS  PubMed Central  Google Scholar 

  • Mishra S, Triptahi V, Singh S, Phukan UJ, Gupta M, Shanker K, Shukla RK (2013) Wound induced tanscriptional regulation of benzylisoquinoline pathway and characterization of wound inducible PsWRKY transcription factor from Papaver somniferum. PLoS ONE 8:e52784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misra P, Pandey A, Tiwari M, Chandrashekar K, Sidhu OP, Asif MH, Chakrabarty D, Singh PK, Trivedi PK, Nath P (2010) Modulation of transcriptome and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to insect resistance. Plant Physiol 152:2258–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell C, Brennan RM, Graham J, Karley AJ (2016) Plant defense against herbivorous pests: exploiting resistance and tolerance traits for sustainable crop protection. Front Plant Sci 7:1132

    Article  PubMed  PubMed Central  Google Scholar 

  • Mousavi SA, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature 500:422–426

    Article  CAS  PubMed  Google Scholar 

  • Mozgova I, Wildhaber T, Liu Q, Abou-Mansour E, L’Haridon F, Metraux J-P, Gruissem W, Hofius D, Hennig L (2015) Chromatin assembly factor CAF-1 represses priming of plant defence response genes. Nature Plants 1:1–8

    Article  Google Scholar 

  • Mur LA, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nan H, Li W, Lin Y-l, Gao L-z (2020) Genome-Wide Analysis of WRKY Genes and Their Response to Salt Stress in the Wild Progenitor of Asian Cultivated Rice. Oryza Rufipogon Front Genetics 11:359

    Article  Google Scholar 

  • Nguyen CT, Kurenda A, Stolz S, Chételat A, Farmer EE (2018) Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant. Proc Natl Acad Sci 115:10178–10183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park CY, Lee JH, Yoo JH, Moon BC, Choi MS, Kang YH, Lee SM, Kim HS, Kang KY, Chung WS (2005) WRKY group IId transcription factors interact with calmodulin. FEBS Lett 579:1545–1550

    Article  CAS  PubMed  Google Scholar 

  • Phukan UJ, Jeena GS, Shukla RK (2016) WRKY transcription factors: molecular regulation and stress responses in plants. Front Plant Sci 7:760

    Article  PubMed  PubMed Central  Google Scholar 

  • Ray S, Gaffor I, Acevedo FE, Helms A, Chuang W-P, Tooker J, Felton GW, Luthe DS (2015) Maize plants recognize herbivore-associated cues from caterpillar frass. J Chem Ecol 41:781–792

    Article  CAS  PubMed  Google Scholar 

  • Rehrig EM, Appel HM, Jones AD, Schultz JC (2014) Roles for jasmonate-and ethylene-induced transcription factors in the ability of Arabidopsis to respond differentially to damage caused by two insect herbivores. Front Plant Sci 5:407

    Article  PubMed  PubMed Central  Google Scholar 

  • Rejeb IB, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3:458–475

    Article  PubMed  PubMed Central  Google Scholar 

  • Reymond P, Bodenhausen N, Van Poecke RM, Krishnamurthy V, Dicke M, Farmer EE (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell 16:3132–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu R, Prabhakaran N, Kundu P, Kumar A (2021) Differential response of phytohormone signalling network determines nonhost resistance in rice during wheat stem rust (Puccinia graminis f. sp. tritici) colonization. Plant Pathol

  • Schluttenhofer C, Yuan L (2015) Regulation of specialized metabolism by WRKY transcription factors. Plant Physiol 167:295–306

    Article  CAS  PubMed  Google Scholar 

  • Schweizer F, Bodenhausen N, Lassueur S, Masclaux FG, Reymond P (2013) Differential contribution of transcription factors to Arabidopsis thaliana defense against Spodoptera littoralis. Front Plant Sci 4:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Liu N, Li C, Wang X, Xu X, Chen W, Xing G, Zheng W (2017) The early response during the interaction of fungal phytopathogen and host plant. Open Biol 7:170057

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh AK, Kumar SR, Dwivedi V, Rai A, Pal S, Shasany AK, Nagegowda DA (2017) A WRKY transcription factor from Withania somnifera regulates triterpenoid withanolide accumulation and biotic stress tolerance through modulation of phytosterol and defense pathways. New Phytol 215:1115–1131

    Article  CAS  PubMed  Google Scholar 

  • Singh V, Roy S, Singh D, Nandi AK (2014) Arabidopsis flowering locus D influences systemic-acquired-resistance-induced expression and histone modifications of WRKY genes. J Biosci 39:119–126

    Article  CAS  PubMed  Google Scholar 

  • Skibbe M, Qu N, Galis I, Baldwin IT (2008) Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell 20:1984–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sözen C, Schenk ST, Boudsocq M, Chardin C, Almeida-Trapp M, Krapp A, Hirt H, Mithöfer A, Colcombet J (2020) Wounding and insect feeding trigger two independent MAPK pathways with distinct regulation and kinetics. Plant Cell 32:1988–2003

    Article  PubMed  PubMed Central  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He SY, Howe GA, Browse J (2007) JAZ repressor proteins are targets of the SCF COI1 complex during jasmonate signalling. Nature 448:661–665

    Article  CAS  PubMed  Google Scholar 

  • Ülker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  Google Scholar 

  • Wang H, Hao J, Chen X, Hao Z, Wang X, Lou Y, Peng Y, Guo Z (2007) Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Mol Biol 65:799–815

    Article  CAS  PubMed  Google Scholar 

  • Wani SH, Anand S, Singh B, Bohra A, Joshi R (2021) WRKY transcription factors and plant defense responses: latest discoveries and future prospects. Plant Cell Rep 40:1071–1085

    Article  CAS  PubMed  Google Scholar 

  • Wei K-F, Chen J, Chen Y-F, Wu L-J, Xie D-X (2012) Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Res 19:153–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Baldwin IT (2010) New insights into plant responses to the attack from insect herbivores. Annu Rev Genet 44:1–24

    Article  CAS  Google Scholar 

  • Wu J, Hettenhausen C, Meldau S, Baldwin IT (2007) Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell 19:1096–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan C, Fan M, Yang M, Zhao J, Zhang W, Su Y, Xiao L, Deng H, Xie D (2018) Injury activates Ca2+/calmodulin-dependent phosphorylation of JAV1-JAZ8-WRKY51 complex for jasmonate biosynthesis. Molecular cell 70, 136–149. e137

  • Yang Y, Zhou Y, Chi Y, Fan B, Chen Z (2017) Characterization of soybean WRKY gene family and identification of soybean WRKY genes that promote resistance to soybean cyst nematode. Sci Rep 7:1–13

    Article  Google Scholar 

  • Yazdani B, Sanjari S, Asghari-Zakaria R, Ghanegolmohammadi F, Pourabed E, Shahbazi M, Shobbar Z (2020) Revision of the barley WRKY gene family phylogeny and expression analysis of the candidate genes in response to drought. Biol Plant 64:9–19

    Article  CAS  Google Scholar 

  • Ye M, Glauser G, Lou Y, Erb M, Hu L (2019) Molecular dissection of early defense signaling underlying volatile-mediated defense regulation and herbivore resistance in rice. Plant Cell 31:687–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo SJ, Kim S-H, Kim M-J, Ryu C-M, Kim YC, Cho BH, Yang K-Y (2014) Involvement of the OsMKK4-OsMPK1 cascade and its downstream transcription factor OsWRKY53 in the wounding response in rice. Plant Pathol J 30:168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Chen Y, Nie L, Jin X, Liao W, Zhao S, Fu C, Yu L (2018) Transcriptome-wide identification and screening of WRKY factors involved in the regulation of taxol biosynthesis in Taxus chinensis. Sci Rep 8:1–12

    Google Scholar 

  • Zhao P, Yao X, Cai C, Li R, Du J, Sun Y, Wang M, Zou Z, Wang Q, Kliebenstein DJ. (2019) Viruses mobilize plant immunity to deter nonvector insect herbivores. Science advances 5:eaav9801

  • Zhou X, Jiang Y, Yu D (2011) WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis. Mol Cells 31:303–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


We acknowledge Department of Biotechnology (DBT), India for NIPGR core grant and BIOCARE grant for postdoctoral fellowship to PK. We acknowledge DBT-eLibrary Consortium (DeLCON) for providing access to e-resources.

Author information

Authors and Affiliations



JV contributed to the development of the concept and the design of the review. PK wrote the manuscript with contributions from JV. Both the authors have read and approved the submitted version.

Corresponding author

Correspondence to Jyothilakshmi Vadassery.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, P., Vadassery, J. Role of WRKY transcription factors in plant defense against lepidopteran insect herbivores: an overview. J. Plant Biochem. Biotechnol. 30, 698–707 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: