Skip to main content

Untargeted metabolomics reveals differences between commercial and non-commercial Camellia sinensis cultivars used in black tea production

Abstract

Tea (Camellia sinensis) has enthralled both consumers and researchers, due to its taste, aroma and its medicinal attributes. Tea consumers concern themselves with the quality of tea in particular, its taste and aroma based on which consumers are willing to pay premium prices for the best quality teas. The quality of tea is undeniably affected by variations in its metabolite composition. In this study, two groups of black tea cultivars were compared using a metabolomics approach. Data were generated via GC–MS and 1H-NMR. The GC–MS differentiated between the two groups, based on carbohydrates. The 1H-NMR differentiated between the two groups, based on caffeine, catechins and amino acids. These metabolites applicability in the discrimination of newly developed cultivars into potentially commercialisable and non-commercialisable groups at an early stage in the tea improvement programme is demonstrated. This may help tea breeders to select promising high quality tea cultivars either for release or further field evaluations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

CI:

Confidence interval

Comm:

Commercial

DT:

Drought tolerant

GC–MS:

Gas chromatography mass spectrometry

NMR:

Nuclear magnetic resonance

NComm:

NonCommercial

PCA:

Principal component analysis

PLS-DA:

Partial least squares discriminant analysis

TRI:

Tea Research Institute

References

  1. Ackermann J, Fischer M, Amado R (1992) Changes in sugars, acids, and amino acids during ripening and storage of apples (cv. Glockenapfel). J Agric Food Chem 40(7):1131–1134

    CAS  Article  Google Scholar 

  2. Baeza G, Sarriá B, Bravo L, Mateos R (2016) Exhaustive qualitative LC-DAD-MS n analysis of arabica green coffee beans: Cinnamoyl-glycosides and Cinnamoylshikimic acids as new polyphenols in green coffee. J Agric Food Chem 64(51):9663–9674

    CAS  PubMed  Article  Google Scholar 

  3. Bandurski RS, Schulze A (1977) Concentration of indole-3-acetic acid and its derivatives in plants. Plant Phys 60(2):211–213

    CAS  Article  Google Scholar 

  4. Brühl L, Matthäus B, Scheipers A, Hofmann T (2008) Bitter off-taste in stored cold-pressed linseed oil obtained from different varieties. Eur J Lip Sci Technol 110(7):625–631

    Article  CAS  Google Scholar 

  5. Buffo RA, Cardelli-Freire C (2004) Coffee flavour, an overview. Flavour Frag J 19(2):99–104

    CAS  Article  Google Scholar 

  6. Cabrera C, Artacho R, Giménez R (2006) Beneficial effects of green tea—a review. JACN 25(2):79–99

    CAS  Google Scholar 

  7. Chattopadhyay S, Raychaudhuri U, Chakraborty R (2014) Artificial sweeteners–a review. JFST 51(4):611–621

    CAS  Google Scholar 

  8. Chaturvedula VSP, Prakash I (2011) The aroma, taste, color and bioactive constituents of tea. J Med Plant Res 5(11):2110–2124

    CAS  Google Scholar 

  9. Chin JM, Merves ML, Goldberger BA, Sampson-Cone A, Cone EJ (2008) Caffeine content of brewed teas. J Anal Toxicol 32(8):702–704

    CAS  PubMed  Article  Google Scholar 

  10. Chugh K (2013) Measuring phenotypic and genetic variances and narrow sense heritability in three populations of annual ryegrass (Lolium multiflorum Lam.).

  11. Clifford MN (2000) Chlorogenic acids and other cinnamates–nature, occurrence, dietary burden, absorption and metabolism. J Sci Food Agric 80(7):1033–1043

    CAS  Article  Google Scholar 

  12. Cortell JM, Sivertsen HK, Kennedy JA, Heymann H (2008) Influence of vine vigor on Pinot noir fruit composition, wine chemical analysis, and wine sensory attributes. AJEV 59(1):1–10

    CAS  Google Scholar 

  13. Dumas M-E, Maibaum EC, Teague C, Ueshima H, Zhou B, Lindon JC, Nicholson JK, Stamler J, Elliott P, Chan Q (2006) Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research, the INTERMAP study. Anal Chem 78(7):2199–2208

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Dutta R, Stein A, Bhagat R (2011) Integrating satellite images and spectroscopy to measuring green and black tea quality. Food Chem 127(2):866–874

    CAS  PubMed  Article  Google Scholar 

  15. Ebbels TM, Lindon JC, Coen M (2011) Processing and modeling of nuclear magnetic resonance (NMR) metabolic profiles. In metabolic profiling, Springer, pp 365–388

  16. Ellinger JJ, Chylla RA, Ulrich EL, Markley JL (2013) Databases and software for NMR-based metabolomics. Curr Metabolomics 1(1):28–40

    CAS  Google Scholar 

  17. Ellis SM, Steyn HS (2003) Practical significance (effect sizes) versus or in combination with statistical significance (p-values). Manag Dyn 12(4):51–53

    Google Scholar 

  18. Fall R, Benson AA (1996) Leaf methanol—the simplest natural product from plants. Trends Plant Sci 1(9):296–301

    Article  Google Scholar 

  19. FAO (Food and Agricultural Organisation)., 2015. http, //www.fao.org. Accessed 15.10.19.

  20. Fehsenfeld F, Calvert J, Fall R, Goldan P, Guenther AB, Hewitt CN, Zimmerman P (1992) Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Biogeochem Cy 6(4):389–430

    CAS  Article  Google Scholar 

  21. Gramza A, Khokhar S, Yoko S, Gliszczynska-Swiglo A, Hes M, Korczak J (2006) Antioxidant activity of tea extracts in lipids and correlation with polyphenol content. Eur J Lip Sci Technol 108(4):351–362

    CAS  Article  Google Scholar 

  22. Habibi Y, Mahrouz M, Marais MF, Vignon MR (2004) An arabinogalactan from the skin of Opuntia ficus-indica prickly pear fruits. Carb Res 339(6):1201–1205

    CAS  Article  Google Scholar 

  23. Hamanishi ET, Barchet GL, Dauwe R, Mansfield SD, Campbell MM (2015) Poplar trees reconfigure the transcriptome and metabolome in response to drought in a genotype-and time-of-day-dependent manner. BMC Genomics 16(1):329

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. Hilton PJ, Palmer-Jones R (1973) Relationship between the flavanol composition of fresh tea shoots and the theaflavin content of manufactured tea. J Sci Food Agric 24(7):813–818

    CAS  Article  Google Scholar 

  25. Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6(9):431–438

    CAS  PubMed  Article  Google Scholar 

  26. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  27. Horemans N, Foyer CH, Potters G, Asard H (2000) Ascorbate function and associated transport systems in plants. Plant Phys Biochem 38(7–8):531–540

    CAS  Article  Google Scholar 

  28. International Tea Committee (ITC). Annual Bulletin of Statistics, 2019.

  29. Jones PR, Gawel R, Francis IL, Waters EJ (2008) The influence of interactions between major white wine components on the aroma, flavour and texture of model white wine. Food Qual Prefer 19(6):596–607

    Article  Google Scholar 

  30. Kaneko S, Kumazawa K, Masuda H, Henze A, Hofmann T (2006) Molecular and sensory studies on the umami taste of Japanese green tea. J Agric Food Chem 54(7):2688–2694

    CAS  PubMed  Article  Google Scholar 

  31. Kang J, Choi M-Y, Kang S, Kwon HN, Wen H, Lee CH, Park M, Wiklund S, Kim HJ, Kwon SW (2008) Application of a 1H nuclear magnetic resonance (NMR) metabolomics approach combined with orthogonal projections to latent structure-discriminant analysis as an efficient tool for discriminating between Korean and Chinese herbal medicines. J Agric Food Chem 56(24):11589–11595

    CAS  PubMed  Article  Google Scholar 

  32. Kaplan F, Guy CL (2004) β-Amylase induction and the protective role of maltose during temperature shock. Plant Phys 135(3):1674–1684

    CAS  Article  Google Scholar 

  33. Kenya National Bureau of Statistics (2018) Kenya facts and figures 2018. Kenya

  34. Kerchev PI, Fenton B, Foyer CH, Hancock RD (2012) Plant responses to insect herbivory, interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant Cell Environ 35(2):441–453

    CAS  PubMed  Article  Google Scholar 

  35. Khan N, Mukhtar H (2007) Tea polyphenols for health promotion. Life Sci 81(7):519–533

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Kobayashi-Hattori K, Mogi A, Matsumoto Y, Takita T (2005) Effect of caffeine on the body fat and lipid metabolism of rats fed on a high-fat diet. Biosci Biotech Bioch 69(11):2219–2223

    CAS  Article  Google Scholar 

  37. Koech RK, Malebe PM, Nyarukowa C, Mose R, Kamunya SM, Apostolides Z (2018) Identification of novel QTL for black tea quality traits and drought tolerance in tea plants (Camellia sinensis). Tree Genet Genomes 14(1):9

    Article  Google Scholar 

  38. Kowalsick A, Kfoury N, Robbat A Jr, Ahmed S, Orians C, Griffin T, Cash SB, Stepp JR (2014) Metabolite profiling of Camellia sinensis by automated sequential, multidimensional gas chromatography/mass spectrometry reveals strong monsoon effects on tea constituents. J Chrom a 1370:230–239

    CAS  Article  Google Scholar 

  39. Kumar V, Rani A, Goyal L, Pratap D, Billore SD, Chauhan GS (2011) Evaluation of vegetable-type soybean for sucrose, taste-related amino acids, and isoflavones contents. Int J Food Prop 14(5):1142–1151

    CAS  Article  Google Scholar 

  40. Kwach BO, Owuor PO, Kamau DM, Msomba SW, Uwimana MA (2016) Variations in the precursors of plain black tea quality parameters due to location of production and nitrogen fertilizer rates in Eastern African clonal tea leaves. Exp Agric 52(2):266–278

    Article  Google Scholar 

  41. Lavarack B, Griffin G, Rodman D (2002) The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenerg 23(5):367–380

    CAS  Article  Google Scholar 

  42. Le Gall G, Colquhoun IJ, Defernez M (2004) Metabolite profiling using 1H NMR spectroscopy for quality assessment of green tea, Camellia sinensis (L.). J Agric Food Chem 52(4):692–700

    PubMed  Article  CAS  Google Scholar 

  43. Ley JP (2008) Masking bitter taste by molecules. Chemosens Percept 1(1):58–77

    Article  Google Scholar 

  44. Lin YL, Juan IM, Chen YL, Liang YC, Lin JK (1996) Composition of polyphenols in fresh tea leaves and associations of their oxygen-radical-absorbing capacity with antiproliferative actions in fibroblast cells. J Agric Food Chem 44(6):1387–1394

    CAS  Article  Google Scholar 

  45. Lorist MM, Tops M (2003) Caffeine, fatigue, and cognition. Brain Cogn 53(1):82–94

    PubMed  Article  Google Scholar 

  46. Ma B, Chen J, Zheng H, Fang T, Ogutu C, Li S, Han Y, Wu B (2015) Comparative assessment of sugar and malic acid composition in cultivated and wild apples. Food Chem 172:86–91

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. MacDonald RC, Fall R (1993) Detection of substantial emissions of methanol from plants to the atmosphere. A Gen Top 27(11):1709–1713

    Article  Google Scholar 

  48. Marks SC, Mullen W, Crozier A (2007) Flavonoid and chlorogenic acid profiles of English cider apples. J Sci Food Agric 87(4):719–728

    CAS  Article  Google Scholar 

  49. Matanjun P, Mohamed S, Mustapha NM, Muhammad K, Ming CH (2008) Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo. J Appl Phycol 20(4):367–373

    CAS  Article  Google Scholar 

  50. Mazzafera P, Silvarolla MB (2010) Caffeine content variation in single green Arabica coffee seeds. Seed Sci Res 20(3):163–167

    CAS  Article  Google Scholar 

  51. Melgarejo P, Salazar DM, Artes F (2000) Organic acids and sugars composition of harvested pomegranate fruits. Eur Food Res Technol 211(3):185–190

    CAS  Article  Google Scholar 

  52. Min LU, Huaming AN, Daoping WANG (2017) Characterization of amino acid composition in fruits of three Rosa roxburghii genotypes. Hortic Plant J 3(6):232–236

    Article  Google Scholar 

  53. Mu W, Zhang W, Feng Y, Jiang B, Zhou L (2012) Recent advances on applications and biotechnological production of D-psicose. Appl Micro Biotech 94(6):1461–1467

    CAS  Article  Google Scholar 

  54. Nara K, Kato Y, Motomura Y (2001) Involvement of terminal-arabinose and-galactose pectic compounds in mealiness of apple fruit during storage. Postharvest Biol Tec 22(2):141–150

    CAS  Article  Google Scholar 

  55. Naveed M, Brown LK, Raffan AC, George TS, Bengough AG, Roose T, Hallett PD (2017) Plant exudates may stabilize or weaken soil depending on species, origin and time. Eur J Soil Sci 68(6):806–816

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Nemecek-Marshall M, MacDonald RC, Franzen JJ, Wojciechowski CL, Fall R (1995) Methanol emission from leaves (enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development). Plant Phys 108(4):1359–1368

    CAS  Article  Google Scholar 

  57. Nitin Seetohul L, Islam M, O’Hare WT, Ali Z (2006) Discrimination of teas based on total luminescence spectroscopy and pattern recognition. J Sci Food Agric 86(13):2092–2098

    Article  CAS  Google Scholar 

  58. Nyarukowa C, Koech R, Loots T, Apostolides Z (2016) SWAPDT, A method for Short-time withering assessment of probability for drought tolerance in Camellia sinensis validated by targeted metabolomics. J Plant Phys 198:39–48

    CAS  Article  Google Scholar 

  59. Nyarukowa CT, Koech KR, Loots T, Hageman J, Apostolides Z (2018) Prioritising the replanting schedule of seedling tea fields on tea estates for drought susceptibility measured by the SWAPDT method in the absence of historical in-filling records. J Agric Sci 10(7):26–34

    Google Scholar 

  60. Obanda M, Owuor PO, Mang’oka R (2001) Changes in the chemical and sensory quality parameters of black tea due to variations of fermentation time and temperature. Food Chem 75(4):395–404

    CAS  Article  Google Scholar 

  61. Oshima H, Kimura I, Izumori K (2006) Psicose contents in various food products and its origin. Food Sci Tech Res 12(2):137–143

    CAS  Article  Google Scholar 

  62. Owuor PO, Obanda M (2007) The use of green tea (Camellia sinensis (L.)) leaf flavan-3-ols composition in predicting plain black tea quality potential. Food Chem 100(3):873–884

    CAS  Article  Google Scholar 

  63. Pongsuwan W, Fukusaki E, Bamba T, Yonetani T, Yamahara T, Kobayashi A (2007) Prediction of Japanese green tea ranking by gas chromatography/mass spectrometry-based hydrophilic metabolite fingerprinting. J Agric Food Chem 55(2):231–236

    CAS  PubMed  Article  Google Scholar 

  64. Qin Z, Pang X, Chen D, Cheng H, Hu X, Wu J (2013) Evaluation of Chinese tea by the electronic nose and gas chromatography–mass spectrometry, Correlation with sensory properties and classification according to grade level. Food Res Int 53(2):864–874

    CAS  Article  Google Scholar 

  65. Rawat R, Gulati A, Babu GK, Acharya R, Kaul VK, Singh B (2007) Characterization of volatile components of Kangra orthodox black tea by gas chromatography-mass spectrometry. Food Chem 105(1):229–235

    CAS  Article  Google Scholar 

  66. Renault H, Alber A, Horst NA, Lopes AB, Fich EA, Kriegshauser L, Pineau E (2017) A phenol-enriched cuticle is ancestral to lignin evolution in land plants. Nature Comm 8:14713

    Article  Google Scholar 

  67. Rodrigues CI, Marta L, Maia R, Miranda M, Ribeirinho M, Máguas C (2007) Application of solid-phase extraction to brewed coffee caffeine and organic acid determination by UV/HPLC. J Food Comp Anal 20(5):440–448

    CAS  Article  Google Scholar 

  68. Roser DJ, Melick DR, Ling HU, Seppelt RD (1992) Polyol and sugar content of terrestrial plants from continental Antarctica. Antarct Sci 4(4):413–420

    Article  Google Scholar 

  69. Saccenti E, Hoefsloot HC, Smilde AK, Westerhuis JA, Hendriks MM (2014) Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics 10(3):361–374

    CAS  Article  Google Scholar 

  70. Sanderson GW, Grahamm HN (1973) Formation of black tea aroma. J Agric Food Chem 21(4):576–585

    CAS  Article  Google Scholar 

  71. Sanhueza E, Andreae MO (1991) Emission of formic and acetic acids from tropical savanna soils. Geophys Res Lett 18(9):1707–1710

    CAS  Article  Google Scholar 

  72. Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J (2014) Identifying small molecules via high resolution mass spectrometry, communicating confidence. Environ Sci Technol 48(4):2097–2098

    CAS  PubMed  Article  Google Scholar 

  73. Sokolowsky M, Fischer U (2012) Evaluation of bitterness in white wine applying descriptive analysis, time-intensity analysis, and temporal dominance of sensations analysis. Anal Chim Acta 7(32):46–52

    Article  CAS  Google Scholar 

  74. Stephan A, Steinhart H (2000) Bitter taste of unsaturated free fatty acids in emulsions, contribution to the off-flavour of soybean lecithins. Eur Food Res Technol 212(1):17–25

    CAS  Article  Google Scholar 

  75. Tan F, Tan C, Zhao A, Li M (2011) Simultaneous determination of free amino acid content in tea infusions by using high-performance liquid chromatography with fluorescence detection coupled with alternating penalty trilinear decomposition algorithm. J Agric Food Chem 59(20):10839–10847

    CAS  PubMed  Article  Google Scholar 

  76. Taylor NW (1928) A physico-chemical theory of sweet and bitter taste excitation based on the properties of the plasma membrane. Protoplasma 4(1):1–17

    CAS  Article  Google Scholar 

  77. Toumi I, Gargouri M, Nouairi I, Moschou PN, Salem-Fnayou AB, Mliki A, Ghorbel A (2008) Water stress induced changes in the leaf lipid composition of four grapevine genotypes with different drought tolerance. Biol Plantarum 52(1):161–164

    CAS  Article  Google Scholar 

  78. Tripathi A, Parmar D, Patel U, Patel G, Daslaniya D, Bhimani B (2011) Taste masking, a novel approach for bitter and obnoxious drugs. JPSBR 1(3):36–142

    Google Scholar 

  79. Unno K, Tanida N, Ishii N, Yamamoto H, Iguchi K, Hoshino M, Yamada H (2013) Anti-stress effect of theanine on students during pharmacy practice, positive correlation among salivary α-amylase activity, trait anxiety and subjective stress. Pharmacol Biochem Behav 111:128–135

    CAS  PubMed  Article  Google Scholar 

  80. Valpuesta V, Botella MA (2004) Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci 9(12):573–577

    CAS  PubMed  Article  Google Scholar 

  81. van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ (2006) Centering, scaling, and transformations, improving the biological information content of metabolomics data. BMC Genomics 7(1):142

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  82. Vuong QV, Bowyer MC, Roach PD (2011) L-Theanine, properties, synthesis and isolation from tea. J Sci Food Agric 91(11):1931–1939

    CAS  PubMed  Article  Google Scholar 

  83. Warrack BM, Hnatyshyn S, Ott KH, Reily MD, Sanders M, Zhang H, Drexler DM (2009) Normalization strategies for metabonomic analysis of urine samples. J Chromatogr B 877(5–6):547–552

    CAS  Article  Google Scholar 

  84. Welti R, Li W, Li M, Sang Y, Biesiada H, Zhou HE, Wang X (2002) Profiling membrane lipids in plant stress responses role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J Bio Chem 277(35):31994–32002

    CAS  Article  Google Scholar 

  85. Worley B, Halouska S, Powers R (2013) Utilities for quantifying separation in PCA/PLS-DA scores plots. Anal Biochem 433(2):102–104

    CAS  PubMed  Article  Google Scholar 

  86. Xu Y-Q, Zhang Y-N, Chen J-X, Wang F, Du Q-Z, Yin J-F (2018) Quantitative analyses of the bitterness and astringency of catechins from green tea. Food Chem 258:16–24

    CAS  PubMed  Article  Google Scholar 

  87. Yan SH (2007) NIR evaluation of the quality of tea and its market price. Spectr Eur 19(2):16–19

    CAS  Google Scholar 

  88. Zhang J, Wang X, Yu O, Tang J, Gu X, Wan X, Fang C (2010) Metabolic profiling of strawberry (Fragaria × ananassa Duch.) during fruit development and maturation. J Exp Bot 62(3):1103–1118

    PubMed  Article  CAS  Google Scholar 

  89. Zhou J, Ho CT, Long P, Meng Q, Zhang L, Wan X (2019) Preventive Efficiency of Green Tea and Its Components on Nonalcoholic Fatty Liver Disease. J Agric Food Chem 67(19):5306–5317

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support to conduct this research, and study grants for CN from James Finlay (Kenya) Ltd., George Williamson (Kenya) Ltd., Sotik Tea Company (Kenya) Ltd., Mcleod Russell (Uganda) Ltd., the TRI of Kenya, and Southern African Biochemistry and Informatics for Natural Products (SABINA). The C. sinensis cultivars used in this study were provided by the TRI of Kenya. Supplementary funding was provided by the Technology and Human Resources for Industry Programme (THRIP), an initiative of the Department of Trade and Industries of South Africa (dti), the National Research Foundation (NRF) of South Africa, and the University of Pretoria South Africa.

Author information

Affiliations

Authors

Contributions

ZA, RM and SK were involved with the experimental design of the research. RK and CN were responsible for plant material collection. CN, SM, and ZL conducted the experiments. MvR performed statistical analysis. CN wrote the manuscript, which was revised by MvR, RK, RM, SK, SM, ZL, and ZA. The manuscript was reviewed and approved by all the authors.

Corresponding author

Correspondence to Christopher Nyarukowa.

Ethics declarations

Conflict of interest

The authors assert that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nyarukowa, C., van Reenen, M., Koech, R. et al. Untargeted metabolomics reveals differences between commercial and non-commercial Camellia sinensis cultivars used in black tea production. J. Plant Biochem. Biotechnol. (2021). https://doi.org/10.1007/s13562-021-00722-9

Download citation

Keywords

  • Camellia sinensis
  • Catechin
  • Metabolomics
  • Tea quality