Skip to main content

Evidence of stress induced flowering in bamboo and comments on probable biochemical and molecular factors


Bamboo is used as a multi-purpose, non-timber plant worldwide. The variation in flowering time across bamboo species and prolonged interval between vegetative and reproductive phases has attracted researchers over the decade to understand the ecological, physiological, and molecular reasons behind this. Typical flowering pathway genes related to photoperiod, vernalization, and hormonal regulation have been identified in the sequenced bamboo genome Phyllostachys edulis and many of them are transcriptionally active in other bamboo species such as Bambusa tulda. However, growing evidences suggest that stress such as drought may act as an important ‘cue’ to determine the flowering time in bamboo species. Here we provide evidence that indeed, an abundance of ABA, which is the marker hormone for drought response, is higher in young leaf from flowering culm (YLF) than a leaf from non-flowering culm (YLN). We also have observed that fire and pruning can induce flowering in Bambusa tulda, B. balcooa, Dendrocalamus hookeri and Melocanna baccifera. Finally, we discuss on the putative role of stress-induced flowering pathway genes in bamboo. Taken together, the finding of this study will aid in the sustainable management of bamboo resources in India and elsewhere.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4



Gibberellic acid


Indole-3-acetic acid


Abscisic acid


Young leaf from flowering culm


Young leaf from non-flowering culm




Flowering Locus T


Constans A


Late elongated hypocoty l


Suppressor of Overexpression of Constans 1


Timing of Cab Expression 1




  1. Bahadur KN (1980) A note on the flowering of Bambusa nutans. Indian Forester 106(4):314–316

    Google Scholar 

  2. Banerjee S, Basak M, Dutta S, Chanda C, Dey A, Das M (2021) Ethnobamboology: traditional uses of bamboos and opportunities to exploit genomic resources for better exploitation. In: Ahmad Z, Ding Y, Shahzad A Biotechnological Advances in Bamboo: The “Green Gold” on the Earth” Springer, Singapore, pp 313–352

  3. Basak M, Dutta S, Biswas S, Chakraborty S, Rahaman T, Sarkar A, Dey S, Biswas P, Das M (2021) Genomic insights into growth and development of bamboos: what have we learnt and what more to discover? Trees.

    Article  Google Scholar 

  4. Bhattacharya S, Das M, Bar R, Pal A (2006) Morphological and molecular characterization of Bambusa tulda with a Note on Flowering. Ann Bot 98(3):529–535

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Bhattacharya S, Ghosh JS, Das M, Pal A (2009) Morphological and molecular characterization of Thamnocalamus spathiflorus subsp. spathiflorus at population level. Plant Syst Evol 282:13–20

    Article  Google Scholar 

  6. Biswas P, Chakraborty S, Dutta S, Pal A, Das M (2016) Bamboo flowering from the perspective of comparative genomics and transcriptomics. Front Plant Sci 7:1900

    PubMed  PubMed Central  Article  Google Scholar 

  7. Coneva V, Guevara D, Rothstein SJ, Colasanti J (2012) Transcript and metabolite signature of maize source leaves suggests a link between transitory starch to sucrose balance and the autonomous floral transition. J Exp Bot 63(14):5079–5092

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. Das M, Bhattacharya S, Singh P, Filgueiras TS, Pal A (2008) Bamboo taxonomy and diversity in the era of molecular markers. Adv Bot Res 47:225–268

    CAS  Article  Google Scholar 

  9. Dutta S, Biswas P, Chakraborty S, Mitra D, Pal A, Das M (2018) Identification, characterization and gene expression analyses of important flowering genes related to photoperiodic pathway in bamboo. BMC Genom 19:190

    Article  CAS  Google Scholar 

  10. Dutta S, Deb A, Biswas P, Chakraborty S, Guha S, Mitra D, Geist B, Schäffner AR, Das M (2021) Identification and functional characterization of two bamboo FD gene homologs having contrasting effects on shoot growth and flowering. Sci Rep 11:7849

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD (2004) A compound from smoke that promotes seed germination. Science 305:977

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. Flematti GR, Merritt DJ, Piggott MJ et al (2011) Burning vegetation produces cyanohydrins that liberate cyanide and promote seed germination. Nat Commun 2:360

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  13. Flematti GR, Dixon KW, Smith SM (2015) What are karrikins and how were they ‘discovered’ by plants? BMC Biol 13:108

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. Gao J, Zhang Y, Zhang C, Qi F, Li X, Mu S, Peng Z (2014) Characterization of the floral transcriptome of Moso bamboo (Phyllostachys edulis) at different flowering developmental stages by transcriptome sequencing and RNA-Seq analysis. PLoS ONE 9:e88910

    Article  CAS  Google Scholar 

  15. Gamuyao R, Nagai K, Ashikari M, Reuscher S (2017) A new outlook on sporadic flowering of bamboo. Plant Signal Behav 12(7):e1343780

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. Hartnett DC (1991) Effects of fire in tallgrass prairie on growth and reproduction of prairie coneflower (Ratibida columnifera: Asteraceae). Am J Bot 78:429–435

    Article  Google Scholar 

  17. Janzen DH (1976) Why bamboos wait so long to flower. Ann Rev EcolSyst 7:347–391

    Article  Google Scholar 

  18. Jiao Y, Hu Q, Zhu Y et al (2019) Comparative transcriptomic analysis of the flower induction and development of the Lei bamboo (Phyllostachys violascens). BMC Bioinfo 20:687

    CAS  Article  Google Scholar 

  19. John CK, Nadgauda RS (2002) Bamboo Flower Famine Currsci 82(3):261–262

    Google Scholar 

  20. Kakishima S, Yoshimura J, Murata H, Murata J (2011) 6-year periodicity and variable synchronicity in a mass-flowering plant. PLoS ONE 6:e28140

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. Kelen M, Demiralay EC, Sen S, Ozkan G (2004) Separation of abscisic acid, indole-3-acetic acid, gibberellic acid in 99 R (Vitis berlandieri x Vitis rupestris) and rose oil (Rosa damascena Mill.) by reversed phase liquid chromatography. Turk J Chem 28(5):603–610

    CAS  Google Scholar 

  22. Kurz S (1876) Bamboo and Its. Use Ind for 1(2):19–69

    Google Scholar 

  23. Li L, Mu S, Cheng Z et al (2017) Characterization and expression analysis of the WRKY gene family in moso bamboo. Sci Rep 7:6675

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. Li L, Yang K, Wang S et al (2020) Genome-wide analysis of laccase genes in moso bamboo highlights PeLAC10 involved in lignin biosynthesis and in response to abiotic stresses. Plant Cell Rep 39:751–763

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. Li Y, Zhang C, Yang K et al (2019) De novo sequencing of the transcriptome reveals regulators of the floral transition in Fargesia macclureana (Poaceae). BMC Genom 20:1035

    CAS  Article  Google Scholar 

  26. Liu J, Cheng Z, Xie L, Li X, Gao J (2019) Multifaceted role of PheDof12-1 in the regulation of flowering time and abiotic stress responses in Moso bamboo (Phyllostachys edulis). Int J MolSci 20:424

    Google Scholar 

  27. Nair SG, Nair RG (2010) A review on gregarious flowering of Bambusa arundinacea in Khurda Forest Division. Orissa Indian Forester 136(11):1508–1514

    Google Scholar 

  28. Louis B, Waikhom SD, Goyari S, Jose RC, Roy P, Talukdar NC (2015) First proteome study of sporadic flowering in bamboo species (Bambusa vulgaris and Dendrocalamus manipureanus) reveal the boom is associated with stress and mobile genetic elements. Gene 574(2):255–264

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. Naithani HB, Deka AK, Banerjee G (2013) Gregarious flowering of bamboos in Arunachal Pradesh. Indian Forester 139(8):746

    Google Scholar 

  30. Naithani HB, Garbyal SS, Allappatt JP (2008) Flowering of Bambusa vulgaris in Andaman & Nicobar Islands. Indian Forester 134(9):1264–1268

    Google Scholar 

  31. Ohrnberger D (2002) The bamboos of the World Second impression. Elsevier, Amsterdam

    Google Scholar 

  32. Peng Z, Lu Y, Li L et al (2013) The draft genome of the fast- growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat Genet 45:456–461

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. Ray PK (1952) Gregarious flowering of a common hill bamboo Arundinaria maling. Indian Forester 78(2):89–90

    Google Scholar 

  34. Sarma H, Sarma AM, Sarma A, Borah S (2010) A case of gregarious flowering in bamboo, dominated lowland forest of Assam, India: phenology, regeneration, impact on rural economy, and conservation. J for Res 21:409–414

    Article  Google Scholar 

  35. Seethalakshmi KK, Kumar MS M (1998) Bamboos of India: A compendium. Peechi, KFRI 342

  36. Sewwandi SDC, Arampath PC, Silva ABG, Jayatissa R (2020) Determination and comparative study of sugars and synthetic colorants in commercial branded fruit juice products. J Food Qual 2020:7406506

    Article  CAS  Google Scholar 

  37. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth Enzymol 299:152–178

    CAS  Article  Google Scholar 

  38. Taj RK, Tayeng G, Thungdok DK, Gab R, Norbu T, Sinha GN (2009) Bamboo flowering and its monitoring in Arunachal Pradesh (2004 to 2009). SFRI Bulletin No 31

  39. Wagenius S, Beck J, Kiefer G (2020) Fire synchronizes flowering and boosts reproduction in a widespread but declining prairie species. Proc Natl Acad Sci 117(6):201907320

    Article  CAS  Google Scholar 

  40. Wang W, Franklin SB, Lu Z, Rude BJ (2016a) Delayed Flowering in Bamboo: Evidence from Fargesia qinlingensis in the Qinling Mountains of China. Front Plant Sci 7:151

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang T, Yue JJ, Wang XJ et al (2016b) Genome-wide identification and characterization of the Dof gene family in moso bamboo (Phyllostachys heterocycla var. pubescens). Genes Genom 38:733–745

    CAS  Article  Google Scholar 

  42. Wu M, Liu H, Han G et al (2017) A moso bamboo WRKY gene PeWRKY83 confers salinity tolerance in transgenic Arabidopsis plants. Sci Rep 7:11721

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. Wysocki WP, Ruiz-Sanchez E, Yin Y, Duvall MR (2016) The floral transcriptomes of four bamboo species (Bambusoideae; Poaceae): support for common ancestry among woody bamboos. BMC Genom 17:384

    Article  CAS  Google Scholar 

  44. Zhang XM, Zhao L, Larson RZ, Li DZ, Guo ZH (2012) De Novo sequencing and characterization of the floral transcriptome of Dendrocalamus latiflorus (Poaceae: Bambusoideae). PLoS ONE 7:e42082

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Zheng X, Lin S, Fu H, Wan Y, Ding Y (2020) The bamboo flowering cycle sheds light on flowering diversity. Front Plant Sci 11:381

    PubMed  PubMed Central  Article  Google Scholar 

Download references


The research results reported in this paper are funded by Council of Scientific and Industrial Research, India [38(1386)/14/EMR-II], [38(1493)/19/EMR-II], Department of Biotechnology, Govt. of India (BT/PR10778/PBD/16/1070/2014) and FRPDF grant of Presidency University. A part of the study was sponsored by the Alexander von Humboldt Foundation, Germany. BGS and EK extend sincere thanks to the DBT and IBSD for providing research support for this work.

Author information




Malay Das, Evanylla Kharlyngdoh and Bharat G. Somkuwar conceptualized the theme of this paper. Subhadeep Biswas performed assays related to metabolite and phyto-hormone evaluation. Amartya Sarkar identified genes related to stress induced flowering. Evanylla Kharlyngdoh, Bharat G. Somkuwar, Smritikana Dutta and Prasun Biswas surveyed, collected data, photographed evidence of stress induced flowering in bamboo. Suman Guha performed statistical analyses. Malay Das wrote the manuscript with the help of all the co-authors. All authors read, edited and approved the final manuscript.

Corresponding author

Correspondence to Malay Das.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Biswas, S., Sarkar, A., Kharlyngdoh, E. et al. Evidence of stress induced flowering in bamboo and comments on probable biochemical and molecular factors. J. Plant Biochem. Biotechnol. (2021).

Download citation


  • Bamboo flowering
  • Stress
  • Drought
  • Fire
  • Pruning