Skip to main content

MicroRNA mediated regulation of gene expression in response to heavy metals in plants

Abstract

Plants being sessile organisms are exposed to innumerable abiotic and biotic stresses on a daily basis. Heavy metal toxicity in plants results in hampered root growth and defect in root structure, oxidative stress as well as overall loss of yield. Heavy metals generally fall in two groups; essential heavy metals (Cu, Fe, Zn, and Mn) playing a vital role in the entire life of plants and non-essential heavy metals (Cd, Hg, As, Cr, Al). Plants are copped with a variety of arsenals to combat against HM stress such as antioxidants systems, chelation of HMs, their sequestration into the vacuole and many more. Micro RNAs (miRNAs) are 20–24 nucleotides non-coding small RNAs that participate in the regulation of gene expression at post transcriptional level mostly by translational inhibition or by target cleavage. In the present scenario use of advanced techniques such as next-generation sequencing (NGS), whole genome sequencing boosted our knowledge about the population and role of miRNAs in plants during various HM stress. miRNAs targets genes belonging to numerous functions including transcription factors, genes responsible for uptake and transport of HMs, detoxification, hormone signalling and so on. In this review, we recapitulate the topical molecular studies identifying HM responsive miRNAs as well as their participation in the regulation of expression of target genes as a result of miRNA mediated regulatory network of HM response in plants.

This is a preview of subscription content, access via your institution.

Fig. 1

Abbreviations

Al:

Aluminium

As:

Arsenic

AsV:

Arsenate

AsIII:

Arsenite

Cd:

Cadmium

Co:

Cobalt

Cu:

Copper

Cr:

Chromium

GSH:

Glutathione

Hg:

Mercury

HM:

Heavy metal

miRNA:

Micro-RNA

MT:

Metallothionein

NGS:

Next-generation sequencing

Ni:

Nickel

Pb:

Lead

PCs:

Phytochelatins

Zn:

Zinc

References

  1. Andresen E, Peiter E, Küpper H (2018) Trace metal metabolism in plants. J Exp Bot 69:909–954. https://doi.org/10.1093/jxb/erx465

    CAS  Article  PubMed  Google Scholar 

  2. Chang H, Yi B, Ma R, Zhang X, Zhao H, Xi Y (2016) CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep 6:1–2. https://doi.org/10.1038/srep22312

    CAS  Article  Google Scholar 

  3. Chen L, Wang T, Zhao M, Tian Q, Zhang WH (2012) Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. Planta 235:375–386

    CAS  Article  Google Scholar 

  4. Ding YF, Zhu C (2009) The role of microRNAs in copper and cadmium homeostasis. Biochem Biophys Res Commun 386:6–10. https://doi.org/10.1016/j.bbrc.2009.05.137

    CAS  Article  PubMed  Google Scholar 

  5. Ding YF, Qu AL, Gong SM, Huang SX, Lv B, Zhu C (2013) Molecular identification and analysis of Cd-responsive microRNAs in rice. J Agric Food Chem 61:11668–11675. https://doi.org/10.1021/jf401359q

    CAS  Article  PubMed  Google Scholar 

  6. Ding YF, Wang Y, Jiang ZH, Wang FJ, Jiang Q, Sun JW, Chen ZX, Zhu C (2017) MicroRNA268 overexpression affects rice seedling growth under cadmium stress. J Agric Food Chem 65:5860–5867. https://doi.org/10.1021/acs.jafc.7b01164

    CAS  Article  PubMed  Google Scholar 

  7. Ding Y, Gong S, Wang Y, Wang F, Bao H, Sun J, Cai C, Yi K, Chen Z, Zhu C (2018) MicroRNA166 modulates cadmium tolerance and accumulation in rice. Plant Physiol 177:1691–1703. https://doi.org/10.1104/pp.18.00485

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubey IA (2017) Functional roles of microRNAs in agronomically important plants—potential as targets for crop improvement and protection. Front Plant Sci 8:378. https://doi.org/10.3389/fpls.2017.00378

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dubey S, Saxena S, Chauhan AS, Mathur P, Rani V, Chakrabaroty D (2020) Identification and expression analysis of conserved microRNAs during short and prolonged chromium stress in rice (Oryza sativa). Environ Sci Pollut Res Int 27:380–390. https://doi.org/10.1007/s11356-019-06760-0

    CAS  Article  PubMed  Google Scholar 

  10. Ericksen JA, Gustin MS (2004) Foliar exchange of mercury as function of soil and air mercury concentrations. Sci Total Environ 324:271–279. https://doi.org/10.1016/j.scitotenv.2003.10.034

    CAS  Article  PubMed  Google Scholar 

  11. Fu Y, Mason AS, Zhang Y, Lin B, Xiao M, Fu D, Yu H (2019) MicroRNA-mRNA expression profiles and their potential role in cadmium stress response in Brassica napus. BMC Plant Biol 19:1–20. https://doi.org/10.1186/s12870-019-2189-9

    CAS  Article  Google Scholar 

  12. Gao J, Luo M, Peng H, Chen F, Li W (2019) Characterization of cadmium-responsive MicroRNAs and their target genes in maize (Zea mays) roots. BMC Mol Biol 20(1):1–9. https://doi.org/10.1186/s12867-019-0131-1

    Article  Google Scholar 

  13. Ge C, Ding Y, Wang Z, Wan D, Wang Y, Shang Q, Luo S (2009) Responses of wheat seedlings to cadmium, mercury and trichlorobenzene stresses. J Environ Sci 21:806–813. https://doi.org/10.1016/S1001-0742(08)62345-1

    CAS  Article  Google Scholar 

  14. Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M (2019) Heavy metal stress and responses in plants. Int J Environ Sci Technol 16:1807–1828. https://doi.org/10.1007/s13762-019-02215-8

    CAS  Article  Google Scholar 

  15. Ghosh S, Singh K, Shaw AK, Azahar I, Adhikari S, Ghosh U, Basu U, Roy S, Saha S, Sherpa AR, Hossain Z (2017) Insights into the miRNA-mediated response of maize leaf to arsenate stress. Environ Exp Bot 137:96–109. https://doi.org/10.1016/j.envexpbot.2017.01.015

    CAS  Article  Google Scholar 

  16. Goyal D, Yadav A, Prasad M, Singh TB, Shrivastav P, Ali A, Dantu PK, Mishra S (2020) Effect of heavy metals on plant growth: an overview. In: Naeem M, Ansari A, Gill S (eds) Contaminants in agriculture. Springer, Cham, pp 79–101. https://doi.org/10.1007/978-3-030-41552-5_4

    Chapter  Google Scholar 

  17. Han FX, Su Y, Monts DL, Waggoner CA, Plodinec MJ (2006) Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA. Sci Total Environ 368:753–768. https://doi.org/10.1016/j.scitotenv.2006.02.026

    CAS  Article  PubMed  Google Scholar 

  18. Israr M, Sahi S, Datta R, Sarkar D (2006) Bioaccumulation and physiological effects of mercury in Sesbania drummondii. Chemosphere 65:591–598. https://doi.org/10.1016/j.chemosphere.2006.02.016

    CAS  Article  PubMed  Google Scholar 

  19. Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 15:16. https://doi.org/10.1186/s12896-015-0131-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Jalmi SK, Bhagat PK, Verma D, Noryang S, Tayyeba S, Singh K, Sharma D, Sinha AK (2018) Traversing the links between heavy metal stress and plant signaling. Front Plant Sci 9:12. https://doi.org/10.3389/fpls.2018.00012

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kosakivska IV, Babenko LM, Romanenko KO, Korotka IY, Potters G (2021) Molecular mechanisms of plant adaptive responses to heavy metals stress. Cell Biol Int 45:258–272. https://doi.org/10.1002/cbin.11503

    CAS  Article  PubMed  Google Scholar 

  22. Kumar S, Verma S, Trivedi PK (2017) Involvement of small RNAs in phosphorus and sulfur sensing, signaling and stress: current update. Front Plant Sci 8:285. https://doi.org/10.3389/fpls.2017.00285

    Article  PubMed  PubMed Central  Google Scholar 

  23. Küpper H, Andresen E (2016) Mechanisms of metal toxicity in plants. Metallomics 8:269–285. https://doi.org/10.1039/C5MT00244C

    Article  PubMed  Google Scholar 

  24. Li T, Li H, Zhang YX, Liu JY (2011) Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucl Acids Res 39:2821–2833. https://doi.org/10.1093/nar/gkq1047

    CAS  Article  PubMed  Google Scholar 

  25. Li D, Xu X, Hu X, Liu Q, Wang Z, Zhang H, Wang H, Wei M, Wang H, Liu H, Li C (2015) Genome-wide analysis and heavy metal-induced expression profiling of the HMA gene family in Populus trichocarpa. Front Plant Sci 6:1149. https://doi.org/10.3389/fpls.2015.01149

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liang G, Yang F, Yu D (2010) MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J 62:1046–1057. https://doi.org/10.1111/j.1365-313X.2010.04216.x

    CAS  Article  PubMed  Google Scholar 

  27. Lima JC, Arenhart RA, Margis-Pinheiro M, Margis R (2011) Aluminum triggers broad changes in microRNA expression in rice roots. Genet Mol Res 10:2817–2832. https://doi.org/10.4238/2011

    CAS  Article  PubMed  Google Scholar 

  28. Liu Q (2012) Novel miRNAs in the control of arsenite levels in rice. Funct Integr Genomics 12:649–658. https://doi.org/10.1007/s10142-012-0282-3

    CAS  Article  PubMed  Google Scholar 

  29. Liu Q, Zhang H (2012) Molecular identification and analysis of arsenite stress-responsive miRNAs in rice. J Agric Food Chem 60:6524–6536. https://doi.org/10.1021/jf300724t

    CAS  Article  PubMed  Google Scholar 

  30. Liu W, Xu L, Wang Y, Shen H, Zhu X, Zhang K, Chen Y, Yu R, Limera C, Liu L (2015) Transcriptome-wide analysis of chromium-stress responsive microRNAs to explore miRNA-mediated regulatory networks in radish (Raphanus sativus L.). Sci Rep 5:1–7. https://doi.org/10.1038/srep14024

    Article  Google Scholar 

  31. Ma JF, Shen R, Nagao S, Tanimoto E (2004) Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots. Plant Cell Physiol 45:583–589. https://doi.org/10.1093/pcp/pch060

    CAS  Article  PubMed  Google Scholar 

  32. Mahmood Q, Rashid A, Ahmad SS, Azim MR, Bilal M (2012) Current status of toxic metals addition to environment and its consequences. In: Anjum NA, Ahmad I, Pereira ME, Duarte AC, Umar S, Khan NA (eds) The plant family Brassicaceae. Springer, Dordrecht, pp 35–69

    Chapter  Google Scholar 

  33. Meng DK, Chen J, Yang ZM (2011) Enhancement of tolerance of Indian mustard (Brassica juncea) to mercury by carbon monoxide. J Hazard Mat 186:1823–1829. https://doi.org/10.1016/j.jhazmat.2010.12.062

    CAS  Article  Google Scholar 

  34. Meng JG, Zhang XD, Tan SK, Zhao KX, Yang ZM (2017) Genome-wide identification of Cd-responsive NRAMP transporter genes and analyzing expression of NRAMP 1 mediated by miR167 in Brassica napus. Biometals 30:917–931. https://doi.org/10.1007/s10534-017-0057-3

    CAS  Article  PubMed  Google Scholar 

  35. Min Yang Z, Chen J (2013) A potential role of microRNAs in plant response to metal toxicity. Metallomics 5:1184–1190. https://doi.org/10.1039/c3mt00022b

    CAS  Article  Google Scholar 

  36. Nagajyoti PC, Lee KD, Sreekanth TV (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216. https://doi.org/10.1007/S10311-010-0297-8

    CAS  Article  Google Scholar 

  37. Nagasaki H, Itoh J, Hayashi K, Hibara K, Satoh-Nagasawa N, NosakaM MM, Ashikari M, Kitano H, Matsuoka M (2007) The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc Natl Acad Sci 104:14867–14871. https://doi.org/10.1073/pnas.0704339104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439. https://doi.org/10.1126/science.aae0382

    CAS  Article  PubMed  Google Scholar 

  39. Noman A, Aqeel M (2017) miRNA-based heavy metal homeostasis and plant growth. Environ Sci Pollut Res Int 24:10068–10082. https://doi.org/10.1007/s11356-017-8593-5

    CAS  Article  PubMed  Google Scholar 

  40. Noman A, Sanaullah T, Khalid N, Islam W, Khan S, Irshad MK, Aqeel M (2019) Crosstalk between plant miRNA and heavy metal toxicity. In: Sablok G (ed) Plant metallomics and functional omics. Springer, Cham, pp 145–168. https://doi.org/10.1007/978-3-030-19103-0_7

    Chapter  Google Scholar 

  41. Pandey AK, Gedda MR, Verma AK (2020) Effect of arsenic stress on expression pattern of a rice specific miR156j at various developmental stages and their allied co-expression target networks. Front Plant Sci 11:752. https://doi.org/10.3389/fpls.2020.00752

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pegler JL, Oultram JMJ, Nguyen DQ, Grof CPL, Eamens A (2021) MicroRNA-Mediated Responses to cadmium stress in Arabidopsis thaliana. Plants (basel) 10(1):130. https://doi.org/10.3390/plants10010130

    CAS  Article  Google Scholar 

  43. Rellan-Alvarez R, Ortega-Villasante C, Alvarez-Fernandez A, Campo FF, Hernandez LE (2006) Stress responses of Zea mays to cadmium and mercury. Plant Soil 279:41–50. https://doi.org/10.1007/s11104-005-3900-1

    CAS  Article  Google Scholar 

  44. Rizwan M, Ali S, Adrees M, Rizvi H, Zia-ur-Rehman M, Hannan F, Qayyum MF, Hafeez YS (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms management: a critical review. Environ Sci Poll Res Int 23:17859–17879. https://doi.org/10.1007/s11356-016-6436-4

    CAS  Article  Google Scholar 

  45. Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN (2019) Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects. Rev Environ Contam Toxicol 249:71–131. https://doi.org/10.1007/398_2019_24

    CAS  Article  Google Scholar 

  46. Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep 26:2027–2038. https://doi.org/10.1007/s00299-007-0416-6

    CAS  Article  PubMed  Google Scholar 

  47. Sharma D, Tiwari M, Lakhwani D, Tripathi RD, Trivedi PK (2015) Differential expression of microRNAs by arsenate and arsenite stress in natural accessions of rice. Metallomics 7:174-87. https://doi.org/10.1039/c4mt00264d

    CAS  Article  PubMed  Google Scholar 

  48. Shriram V, Kumar V, Devarumath R, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Fron Pant Sci 7:817. https://doi.org/10.3389/fpls.2016.00817

    Article  Google Scholar 

  49. Srivastava S, Suprasanna P (2021) MicroRNAs: Tiny, powerful players of metal stress responses in plants. Plant Physiol Biochem 166:928–938

    CAS  Article  Google Scholar 

  50. Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2013) Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. J Exp Bot 64(1):303–315. https://doi.org/10.1093/jxb/ers333

    CAS  Article  PubMed  Google Scholar 

  51. Stirnberg P, Furner IJ, Ottoline Leyser HM (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J 50:80–94. https://doi.org/10.1111/j.1365-313X.2007.03032.x

    CAS  Article  PubMed  Google Scholar 

  52. Tang M, Mao D, Xu L, Li D, Song S, Chen C (2014) Integrated analysis of miRNA and mRNA expression profiles in response to Cd exposure in rice seedlings. BMC Genomics 15:1–7. https://doi.org/10.1186/1471-2164-15-835

    CAS  Article  Google Scholar 

  53. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Exp Suppl 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  PubMed  Google Scholar 

  54. Vanzin GF, Madson M, Carpita NC, Raikhel NV, Keegstra K, Reiter WD (2002) The mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1. Proc Natl Acad Sci 99:3340–3345. https://doi.org/10.1073/pnas.052450699

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:220–2216. https://doi.org/10.1105/tpc.105.033076

    CAS  Article  Google Scholar 

  56. Wang Y, Li R, Li D, Jia X, Zhou D, Li J, Lyi SM, Hou S, Huang Y, Kochian LV, Liu J (2017) NIP1;2 is a plasma membrane-localized transporter mediating aluminum uptake, translocation, and tolerance in Arabidopsis. Proc Natl Acad Sci 114:5047–5052. https://doi.org/10.1073/pnas.1618557114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Wang B, Cheng D, Chen Z, Zhang M, Zhang G, Jiang M, Tan M (2019) Bioinformatic exploration of the targets of xylem sap miRNAs in maize under cadmium stress. Int J Mol Sci 20:1474. https://doi.org/10.3390/ijms20061474

    CAS  Article  PubMed Central  Google Scholar 

  58. Wu L, Yu J, Shen Q, Huang L, Wu D, Zhang G (2018) Identification of microRNAs in response to aluminum stress in the roots of Tibetan wild barley and cultivated barley. BMC Genomics. https://doi.org/10.1186/s12864-018-4953-x

    Article  PubMed  PubMed Central  Google Scholar 

  59. Xu L, Wang Y, Zhai L, Xu Y, Wang L, Zhu X, Gong Y, Yu R, Limera C, Liu L (2013) Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots. J Exp Bot 64:4271–4287. https://doi.org/10.1093/jxb/ert240

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Xue LJ, Zhang JJ, Xue HW (2009) Characterization and expression profiles of miRNAs in rice seeds. Nucl Acids Res 37:916–930. https://doi.org/10.1093/nar/gkn998

    CAS  Article  PubMed  Google Scholar 

  61. Yoon EK, Yang JH, Lim J, Kim SH, Kim SK, Lee WS (2010) Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucl Acids Res 38:1382–1391. https://doi.org/10.1093/nar/gkp1128

    CAS  Article  PubMed  Google Scholar 

  62. Yu TJ, Luo YF, Liao B, Xie LJ, Chen T, Xiao S, Li JT, Hu SN, Shu WH (2012) Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (Oryza sativa). New Phytol 195:97–112. https://doi.org/10.1111/j.1469-8137.2012.04154.x

    CAS  Article  PubMed  Google Scholar 

  63. Zeng QY, Yang CY, Ma QB, Li XP, Dong WW, Nian H (2012) Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biol 12:182. https://doi.org/10.1186/1471-2229-12-182

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Zhang LW, Song JB, Shu XX, Zhang Y, Yang ZM (2013) miR395 is involved in detoxification of cadmium in Brassica napus. J Hazard Mater 250:204–211. https://doi.org/10.1016/j.jhazmat.2013.01.053

    CAS  Article  PubMed  Google Scholar 

  65. Zhao Y, Zhang C, Liu W, Gao W, Liu C, Song G, Li WX, Mao L, Chen B, Xu Y, Li X (2016) An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci Rep 6:23890. https://doi.org/10.1038/srep23890

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Zhao FY, Han MM, Zhang SY, Wang K, Zhang CR, Liu T, Liu W (2012) Hydrogen peroxide‐mediated growth of the root system occurs via auxin signaling modification and variations in the expression of cell‐cycle genes in rice seedlings exposed to cadmium stress. J Integr Plant Biol 54:991-1006. https://doi.org/10.1111/j.1744-7909.2012.01170.x

    CAS  Article  PubMed  Google Scholar 

  67. Zhou ZS, Huang SQ, Yang ZM (2008) Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophys Res Comm 374:538–542. https://doi.org/10.1016/j.bbrc.2008.07.083

    CAS  Article  PubMed  Google Scholar 

  68. Zhou ZS, Song JB, Yang ZM (2012a) a) Genome wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot 63:4597–4613. https://doi.org/10.1093/jxb/ers136

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Zhou ZS, Zeng HQ, Liu ZP, Yang ZM (2012b) b) Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant Cell Environ 35:86–99

    Article  Google Scholar 

  70. Zhou Q, Yang YC, Shen C, He CT, Yuan JG, Yang ZY (2017) Comparative analysis between low-and high-cadmium-accumulating cultivars of Brassica parachinensis to identify difference of cadmium-induced microRNA and their targets. Plant Soil 420:223–237. https://doi.org/10.1007/s11104-017-3380-0

    CAS  Article  Google Scholar 

  71. Zhou M, Zheng S, Liu R, Lu L, Zhang C, Zhang L, Yant L, Wu Y (2019) The genome-wide impact of cadmium on microRNA and mRNA expression in contrasting Cd responsive wheat genotypes. BMC Genomics 20(1):1–19. https://doi.org/10.1186/s12864-019-5939-z

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Debasis Chakrabarty.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dubey, S., Shri, M. & Chakrabarty, D. MicroRNA mediated regulation of gene expression in response to heavy metals in plants. J. Plant Biochem. Biotechnol. (2021). https://doi.org/10.1007/s13562-021-00718-5

Download citation

Keywords

  • Plants
  • Heavy metal stress
  • miRNA
  • miRNA target genes
  • Gene regulation