Skip to main content
Log in

Plant growth-promoting bacteria (PGPBs) and copper (II) oxide (CuO) nanoparticle ameliorates DNA damage and DNA Methylation in wheat (Triticum aestivum L.) exposed to NaCl stress

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Wheat is the second important cereal crop worldwide due to nutritional composition and role in meeting daily energy needs. Salinity is an abiotic stress factor that restricts crop productivity through influencing plant growth and development in arid and semi-arid regions. Nanomaterials and plant growth promoting bacteria (PGPBs) can be used in many different areas of agriculture for different purposes. In this study, changes in cytosine methylation and DNA damage levels in wheat (Triticum aestivum L.) exposed to salt stress (250 mM NaCl) were determined and possible preventive effects of copper (II) oxide nanoparticles (0, 50 and 100 mg/L; CuO-Nps > 100 nm) and plant growth promoting bacteria (no bacteria, Bacillus subtilis, Lactobacillus casei, Bacillus pumilis; PGPBs) treatments were investigated. Changes in cytosine methylation were analyzed by Coupled Restriction Enzyme Digestion-iPBS (CRED-iPBS) and genotoxic influences and genomic stability was analyzed with the aid of inter-primer binding site (iPBS) primers. Application of 250 mM NaCl remarkably increased polymorphism rate of iPBS profile. Besides, relieve effect of PGPBs with CuO-NPs was observed against adverse effect of 250 mM NaCl stress. The genomic template stability values clearly increased with PGPBs with CuO-NPs treatments, particularly Lactobacillus casei with 100 mg/L of CuO-Nps. In addition, DNA hypo-methylation was observed in all treatments. As a conclusion, PGPBs with CuO-NPs treatments showed a strong anti-genotoxic effect against NaCl stress and they could be used as an alternative molecule to alleviate genetic impairment in wheat under NaCl stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

PGPBs:

Plant growth-promoting bacteria

PCR:

Polymerase chain reaction

CuO:

Copper (II) oxide

NP:

Nanoparticle

CRED:

Coupled Restriction Enzyme Digestion

iPBS:

Inter-primer binding site

GTS:

Genomic template stability

References

  • Abbas G, Chen Y, Khan F, Feng Y, Palta J, Siddique K (2018) Salinity and low phosphorus differentially affect shoot and root traits in two wheat cultivars with contrasting tolerance to salt. Agronomy 8(8):155

    Article  CAS  Google Scholar 

  • Aly AA (2012) Application of DNA (RAPD) and ultrastructure to detect the effect of cadmium stress in Egyptian clover and Sudan grass plantlets. J Stress Physiol Biochem 8(1):241–257

    Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated dna damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827. https://doi.org/10.1021/es202660k

    Article  PubMed  CAS  Google Scholar 

  • Brinate SVB, Martins LD, Pereira Rosa GNG, Cunha VV, de Jesus Sotero A, do Amaral JFT, Tomaz MA, de Jesus WC (2015) Copper can influences growth, disease control and production in arabica coffee trees. Aust J Crop Sci 9(7):678

    CAS  Google Scholar 

  • Citterio S, Aina R, Labra M, Ghiani A, Fumagalli P, Sgorbati S, Santagostino A (2002) Soil genotoxicity assessment: a new strategy based on biomolecular tools and plant bioindicators. Environ Sci Technol 36(12):2748–2753. https://doi.org/10.1021/es0157550

    Article  PubMed  CAS  Google Scholar 

  • Cornelis G, Hund-Rinke K, Kuhlbusch T, Van den Brink N, Nickel C (2014) Fate and bioavailability of engineered nanoparticles in soils: a review. Crit Rev Environ Sci Technol 44(24):2720–2764

    Article  CAS  Google Scholar 

  • Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21(1):1–18

    Article  PubMed  Google Scholar 

  • Davenport SB, Gallego SM, Benavides MP, Tomaro ML (2003) Behaviour of antioxidant defense system in the adaptive response to salt stress in Helianthus annuus L. cells. Plant Growth Regul 40(1):81–88

    Article  CAS  Google Scholar 

  • Demirkiran A, Marakli S, Temel A, Gozukirmizi N (2013) Genetic and epigenetic effects of salinity on in vitro growth of barley. Genet Mol Biol 36(4):566–570. https://doi.org/10.1590/s1415-47572013000400016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32(12):1682–1694

    Article  PubMed  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity metal speciation and induction of oxidative stress in sand-grown wheat. J Nanopart Res. https://doi.org/10.1007/s11051-012-1125-9

    Article  Google Scholar 

  • Dimkpa CO, Bindraban PS, Fugice J, Agyin-Birikorang S, Singh U, Hellums D (2017) Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agron Sust Dev 37(1):5

    Article  Google Scholar 

  • Doğan İ, Kekeç G, Özyiğit İİ, Sakçalı MS (2012) Salinity induced changes in cotton (Gossypium hirsutum L.). Pak J Bot 44:21–25

    Google Scholar 

  • Elmer WH, White JC (2016) The use of metallic oxide nanoparticles to enhance growth of tomatoes and eggplants in disease infested soil or soilless medium. Environ Sci Nano 3(5):1072–1079

    Article  CAS  Google Scholar 

  • Erturk FA, Agar G, Arslan E, Nardemir G, Aydin M, Taspinar MS (2014a) Effects of lead sulfate on genetic and epigenetic changes, and endogenous hormone levels in corn (Zea mays L.). Pol J Environ Stud 23:1925–1932

    CAS  Google Scholar 

  • Erturk FA, Agar G, Arslan E, Nardemir G, Sahin Z (2014b) Determination of genomic instability and DNA methylation effects of Cr on maize (Zea mays L.) using RAPD and CRED-RA analysis. Acta Physiol Plant 36(6):1529–1537. https://doi.org/10.1007/s11738-014-1529-5

    Article  CAS  Google Scholar 

  • Erturk FA, Agar G, Arslan E, Nardemir G (2015a) Analysis of genetic and epigenetic effects of maize seeds in response to heavy metal (Zn) stress. Environ Sci Pollut Res 22(13):10291–10297. https://doi.org/10.1007/s11356-014-3886-4

    Article  CAS  Google Scholar 

  • Erturk FA, Aydin M, Sigmaz B, Taspinar MS, Arslan E, Agar G, Yagci S (2015b) Effects of As2O3 on DNA methylation, genomic instability, and LTR retrotransposon polymorphism in Zea mays. Environ Sci Pollut Res 22(23):18601–18606

    Article  CAS  Google Scholar 

  • Fathi A, Zahedi M, Torabian S, Khoshgoftar A (2017) Response of wheat genotypes to foliar spray of ZnO and Fe2O3 nanoparticles under salt stress. J Plant Nutr 40(10):1376–1385. https://doi.org/10.1080/01904167.2016.1262418

    Article  CAS  Google Scholar 

  • Fu Q, Liu C, Ding N, Lin Y, Guo B (2010) Ameliorative effects of inoculation with the plant growth-promoting rhizobacterium Pseudomonas sp. DW1 on growth of eggplant (Solanum melongena L.) seedlings under salt stress. Agric Water Manag 97(12):1994–2000. https://doi.org/10.1016/j.agwat.2010.02.003

    Article  Google Scholar 

  • Graham P, Vance C (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crop Res 65(2–3):93–106

    Article  Google Scholar 

  • Gupta M, Sarin NB (2009) Heavy metal induced DNA changes in aquatic macrophytes: Random amplified polymorphic DNA analysis and identification of sequence characterized amplified region marker. J Environ Sci 21(5):686–690. https://doi.org/10.1016/s1001-0742(08)62324-4

    Article  CAS  Google Scholar 

  • Hosseinpour A, Özkan G, Nalci Ö, Haliloğlu K (2019) Estimation of genomic instability and DNA methylation due to aluminum (Al) stress in wheat (Triticum aestivum L.) using iPBS and CRED-iPBS analyses. Turk J Bot 43(1):27–37

    Article  Google Scholar 

  • Hosseinpour A, Haliloglu K, Cinisli KT, Ozkan G, Ozturk HI, Pour-Aboughadareh A, Poczai P (2020) Application of zinc oxide nanoparticles and plant growth promoting bacteria reduces genetic impairment under salt stress in tomato (Solanum lycopersicum L‘Linda’). Agriculture 10(11):521

    Article  CAS  Google Scholar 

  • Hossein-Pour A, Ozkan G, Nalci OB, Haliloglu K (2018) Estimation of genomic instability and DNA methylation due to aluminum (Al) stress in wheat (Triticum aestivum L.) using iPBS and CRED-iPBS analyses Turkish Journal of Botany

  • Imlay JA (2003) Pathways of oxidative damage. Annu Rev Microbiol 57(1):395–418

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Antonius K, Smykal P, Schulman AH (2010) iPBS: a universal method for DNA fingerprinting and retrotransposon isolation. Theor Appl Genet 121(8):1419–1430. https://doi.org/10.1007/s00122-010-1398-2

    Article  PubMed  CAS  Google Scholar 

  • Katsuhara M, Kawasaki T (1996) Salt stress induced nuclear and DNA degradation in meristematic cells of barley roots. Plant Cell Physiol 37(2):169–173

    Article  CAS  Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15(6):1692

    Article  Google Scholar 

  • Kim J-M, Sasaki T, Ueda M, Sako K, Seki M (2015) Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front Plant Sci 6:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Beena AS, Awana M, Singh A (2017) Salt-induced tissue-specific cytosine methylation downregulates expression of HKT genes in contrasting Wheat (Triticum aestivum L.) genotypes. DNA Cell Biol 36(4):283–294. https://doi.org/10.1089/dna.2016.3505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maksymiec W (1998) Effect of copper on cellular processes in higher plants. Photosynthetica 34(3):321–342

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, Cambridge

    Google Scholar 

  • McManus P, Hortin J, Anderson AJ, Jacobson AR, Britt DW, Stewart J, McLean JE (2018) Rhizosphere interactions between copper oxide nanoparticles and wheat root exudates in a sand matrix: Influences on copper bioavailability and uptake. Environ Toxicol Chem 37(10):2619–2632

    Article  PubMed  CAS  Google Scholar 

  • McManus P (2016) Rhizosphere interactions between copper oxide nanoparticles and wheat root exudate in a sand matrix; Influences on bioavailability and uptake

  • Miao L, Wang C, Hou J, Wang P, Ao Y, Li Y, Lv B, Yang Y, You G, Xu Y (2016) Effect of alginate on the aggregation kinetics of copper oxide nanoparticles (CuO NPs): bridging interaction and hetero-aggregation induced by Ca 2+. Environ Sci Pollut Res 23(12):11611–11619

    Article  CAS  Google Scholar 

  • Michaud AM, Chappellaz C, Hinsinger P (2008) Copper phytotoxicity affects root elongation and iron nutrition in durum wheat (Triticum turgidum durum L.). Plant Soil 310(1–2):151–165

    Article  CAS  Google Scholar 

  • Monreal C, DeRosa M, Mallubhotla S, Bindraban P, Dimkpa C (2016) Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol Fertil Soils 52(3):423–437

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Murali Achary VM, Panda BB (2009) Aluminium-induced DNA damage and adaptive response to genotoxic stress in plant cells are mediated through reactive oxygen intermediates. Mutagenesis 25(2):201–209

    Article  PubMed  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

    Article  CAS  Google Scholar 

  • Nemli S, Kianoosh T, Tanyolac MB (2015) Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) accessions through retrotransposon-based interprimer binding sites (iPBSs) markers. Turk J Agric Forest 39(6):940–948

    Article  CAS  Google Scholar 

  • Peng H, Zhang J (2009) Plant genomic DNA methylation in response to stresses: potential applications and challenges in plant breeding. Prog Nat Sci 19(9):1037–1045

    Article  CAS  Google Scholar 

  • Printz B, Lutts S, Hausman J-F, Sergeants K (2016) Copper trafficking in plants and its implication on cell wall dynamics. Front Plant Sci. https://doi.org/10.3389/fpls.2016.00601

    Article  PubMed  PubMed Central  Google Scholar 

  • Rinaldi M, Garofalo P, Rubino P, Steduto P (2011) Processing tomatoes under different irrigation regimes in Southern Italy: agronomic and economic assessments in a simulation case study. J Agrometeorol 3(3):39–56

    Google Scholar 

  • Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287(1–2):15–21

    Article  Google Scholar 

  • Saleh B (2016) DNA changes in cotton (Gossypium hirsutum L.) under salt stress as revealed by RAPD marker. Adv Horticult Sci 30(1):13–21

    Google Scholar 

  • Shams M, Yildirim E, Agar G, Ercisli S, Ekinci M, Dursun A, Kul R (2018) Nitric oxide alleviates copper toxicity in germinating seed and seedling growth of Lactuca sativa L. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 46(1):167–172. https://doi.org/10.15835/nbha46110912

    Article  CAS  Google Scholar 

  • Shilev S, Sancho ED, Benlloch-González M (2012) Rhizospheric bacteria alleviate salt-produced stress in sunflower. J Environ Manag 95:S37–S41

    Article  CAS  Google Scholar 

  • Sigmaz B, Agar G, Arslan E, Aydin M, Taspinar MS (2015) The role of putrescine against the long terminal repeat (LTR) retrotransposon polymorphisms induced by salinity stress in Triticum aestivum. Acta Physiol Plant 37(11):251

    Article  Google Scholar 

  • Singh A, Singh N, Hussain I, Singh H, Yadav V (2017) Synthesis and characterization of copper oxide nanoparticles and its impact on germination of Vigna radiata (L.) R. Wilczek. Trop Plant Biol 4(2):246–253

    Google Scholar 

  • Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277(40):37741–37746

    Article  PubMed  CAS  Google Scholar 

  • Tanee T, Chadmuk P, Sudmoon R, Chaveerach A, Noikotr K (2012) Genetic analysis for identification, genomic template stability in hybrids and barcodes of the Vanda species (Orchidaceae) of Thailand. Afr J Biotech 11(55):11772–11781

    CAS  Google Scholar 

  • Taspinar MS, Aydin M, Arslan E, Sigmaz B, Agar G (2017) Salinity and putrescine effects on DNA methylation changes in Triticum aestivum. J Biotechnol 256:S101

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Wang Y, Wisniewski M, Meilan R, Uratsu SL, Cui M, Dandekar A, Fuchigami L (2007) Ectopic expression of Mn-SOD in Lycopersicon esculentum leads to enhanced tolerance to salt and oxidative stress. J Appl Hortic 9:3–8

    Article  Google Scholar 

  • Yang X, Zhang W, Zhao Z, Li N, Mou Z, Sun D, Cai Y, Wang W, Lin Y (2017) Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials. J Inorg Biochem 16736–16748. https://doi.org/10.1016/j.jinorgbio.2016.11.023

    Article  PubMed  CAS  Google Scholar 

  • Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46(1):49–54. https://doi.org/10.1016/j.ejsobi.2009.11.002

    Article  CAS  Google Scholar 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 17(1):145–156

    Article  CAS  Google Scholar 

  • Zeinalzadehtabrizi H, Hosseinpour A, Aydin M, Haliloglu K (2015) A modified genomic DNA extraction method from leaves of sunflower for PCR based analyzes. J Biodivers Environ Sci 7(6):222–225

    Google Scholar 

  • Zhang Q, Liu H, Hu H, Li S, Ying Y, Wu J (2014) Analysis of the DNA methylation on Camptotheca acuminata decne plants growing in vitro in response to sodium chloride stress. Propag Ornam Plants 14(2):76–83

    Google Scholar 

  • Zhong L, Wang J-B (2007) The role of DNA hypermethylation in salt resistence of Triticum aestivum L. J Wuhan Bot Res 1:019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AH conceived and designed the experiments and worked for writing and editing of the English of this paper. TC, EI, GO, HIO and KH performed the experiments, collected and analyzed the data. EI went through literature and helped in drafting the manuscript.

Corresponding author

Correspondence to Emre Ilhan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinpour, A., Ilhan, E., Özkan, G. et al. Plant growth-promoting bacteria (PGPBs) and copper (II) oxide (CuO) nanoparticle ameliorates DNA damage and DNA Methylation in wheat (Triticum aestivum L.) exposed to NaCl stress. J. Plant Biochem. Biotechnol. 31, 751–764 (2022). https://doi.org/10.1007/s13562-021-00713-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-021-00713-w

Keywords

Navigation