Skip to main content
Log in

Micropropagation, antioxidant and anticancer activity of pineapple orchid: Dendrobium densiflorum Lindl

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Micropropagation was successfully established in the pineapple orchid Dendrobium densiflorum for its conservation and future utilization in the anticancer drug discovery. Micropropagation was carried out via seeds culture on the MS medium. Furthermore, antioxidant and anticancer activities were explored through DPPH and MTT assays. For culture initiation, maximum seed germination (84%) was achieved on half-strength MS medium supplemented with 10% coconut water. Full-strength MS medium supplemented with 15% coconut water was found suitable for highest number of shoot formation from protocorms, while a maximum number of roots were developed on micro-shoots grown on the full-strength MS medium supplemented with 1.5 mg/L IBA. The combination of cocopeat, pine bark and sphagnum moss in the ratio of 2:1:1 was the best substrate used in acclimatization stage resulting in 92% survivability of acclimatized plantlets. Extract of wild plant’s stems (DDW) at 475.28 μg/mL concentration inhibited the 50% DPPH free radicals. Therefore, DDW at 369.16 and 470.97 µg/mL concentrations inhibited the growth of 50% cervical cancer cells (HeLa) and glioblastoma cells (U251) respectively. This research highlighted the micropropagation of D. densiflorum to be utilized in conservation and its potential anticancer drugs to be discovered in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AA:

Ascorbic acid

BAP:

6-Benzylamino purine

CW:

Coconut water

DDT:

Dendrobium densiflorum In vitro protocorm extract

DDW:

Dendrobium densiflorum Wild plant’s stems extract

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

EMEM:

Eagle minimum essential medium

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butryric acid

Kn:

Knudson

MS:

Murashige and Skoog

MTT:

3-[4,5-Dimethylthiazole-2-yl]-2,5-diphenyl-tetrazolium bromide

NAA:

1-Naphthaleneacetic acid

References

  • Aktar S, Nasiruddin KM, Huq H (2007) In vitro root formation in Dendrobium orchid plantets with IBA. J Agric Rural Dev 5:48–51

    Google Scholar 

  • Asghar S, Ahmad T, Hafiz IA, Yaseen M (2011) In vitro propagation of orchid (Dendrobium nobile) var. Emma White. Afr J Biotechnol 10:3097–3103

    Article  CAS  Google Scholar 

  • Cakova V, Bonte F, Lobstein A (2017) Dendrobium: sources of active ingredients to treat age-related pathologies. Aging Dis 8:827–849

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardile V, Avola R, Graziano ACE, Russo A (2020) Moscatilin, a bibenzyl derivative from the orchid Dendrobium loddigesii, induces apoptosis in melanoma cells. Chem Biol Interact 323:109075

    Article  CAS  PubMed  Google Scholar 

  • Chand MB, Paudel MR, Pant B (2016) The antioxidant activity of selected wild orchids of Nepal. J Coast Life Med 4:731–736

    Article  CAS  Google Scholar 

  • Cui HY, Murthy HN, Moh SH et al (2014) Production of biomass and bioactive compounds in protocorm cultures of Dendrobium candidum Wall ex Lindl. using balloon type bubble bioreactors. Ind Crops Prod 53:28–33

    Article  CAS  Google Scholar 

  • da Silva JAT (2013) Orchids: advances in tissue culture, genetics, phytochemistry and transgenic biotechnology. Floric Ornam Biotechnol 7:1–52

    Google Scholar 

  • da Silva JAT, Cardoso JC, Dobránszki J, Zeng SJ (2015) Dendrobium micropropagation: a review. Plant Cell Rep 34:671–704

    Article  PubMed  CAS  Google Scholar 

  • da Silva JAT, Winarto B, Dobranszki J et al (2016) Tissue disinfection for preparation of Dendrobium in vitro culture. Folia Hortic 28:57–75

    Article  Google Scholar 

  • De KK, Majumdar S, Sharma R, Sharma B (2006) Green pod culture and rapid micropropagation of Dendrobium chrysanthum Wall.—a horticultural and medicinal orchid. Folia Hortic 18:81–90

    Google Scholar 

  • Dias MI, Sousa MJ, Alves RC, Ferreira ICFR (2016) Exploring plant tissue culture to improve the production of phenolic compounds: a review. Ind Crops Prod 82:9–22

    Article  CAS  Google Scholar 

  • Dutta S, Chowdhury A, Bhattacharjee B et al (2011) In vitro multiplication and protocorm development of Dendrobium aphyllum (Roxb.) CEC Fisher. Assam Univ J Sci Technol 7:57–62

    Google Scholar 

  • Espinosa-Leal CA, Puente-Garza CA, García-Lara S (2018) In vitro plant tissue culture: means for production of biological active compounds. Planta 248:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan C, Wang W, Wang Y et al (2001) Chemical constituents from Dendrobium densiflorum. Phytochemistry 57:1255–1258

    Article  CAS  PubMed  Google Scholar 

  • Fay MF (2018) Orchid conservation: how can we meet the challenges in the twenty-first century? Bot Stud 59:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferreira WDM, Kerbauy GB, Costa APP (2006) Micropropagation and genetic stability of a Dendrobium hybrid (Orchidaceae). Vitr Cell Dev Biol Plant 42:568–571

    Article  CAS  Google Scholar 

  • Gueven A (2012) Plant tissue cultures in production of secondary metabolites. Food Sci Eng Technol 59:553–556

    Google Scholar 

  • Hlosrichok A, Sumkhemthong S, Sritularak B et al (2018) A bibenzyl from Dendrobium ellipsophyllum induces apoptosis in human lung cancer cells. J Nat Med 72:615–625

    Article  CAS  PubMed  Google Scholar 

  • Hossain MM (2008) Asymbiotic seed germination and in vitro seedling development of Epidendrum ibaguense Kunth. (Orchidaceae). Afr J Biotechnol 7:3614–3619

    CAS  Google Scholar 

  • Hussain MS, Fareed S, Ansari S et al (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4:10–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joshi PR, Paudel MR, Chand MB et al (2020) Cytotoxic effect of selected wild orchids on two different human cancer cell lines. Heliyon 6:e03991

    Article  PubMed  PubMed Central  Google Scholar 

  • Kedare SB, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48:412–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauzer D, Renaut S, St-Arnaud M, Barabé D (2007) In vitro asymbiotic germination, protocorm development, and plantlet acclimatization of Aplectrum hyemale (Muhl. ex Willd.) Torr. (Orchidaceae). J Torrey Bot Soc 134:344–348

    Article  Google Scholar 

  • Lesar H, Hlebec B, Čeranic N et al (2012) Acclimatization of terrestrial orchid Bletilla striata Rchb. f. (Orchidaceae) propagated under in vitro conditions. Acta Agric Slov 99:69–75

    Google Scholar 

  • Lo SF, Mulabagal V, Chen CL et al (2004a) Bioguided fractionation and isolation of free radical scavenging components from in vitro propagated chinese medicinal plants Dendrobium tosaense Makino and Dendrobium moniliforme SW. J Agric Food Chem 52:6916–6919

    Article  CAS  PubMed  Google Scholar 

  • Lo SF, Nalawade SM, Mulabagal V et al (2004b) In vitro propagation by asymbiotic seed germination and 1,1-diphenyl- 2-picrylhydrazyl (DPPH) radical scavenging activity studies of tissue culture raised plants of three medicinally important species of Dendrobium. Biol Pharm Bull 27:731–735

    Article  CAS  PubMed  Google Scholar 

  • Lu TL, Han CK, Chang YS et al (2014) Denbinobin, a phenanthrene from Dendrobium nobile, impairs prostate cancer migration by inhibiting Rac1 activity. Am J Chin Med 42:1539–1554

    Article  CAS  PubMed  Google Scholar 

  • Molyneux P (2004) The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol 26:211–219

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nasiruddin KM, Begum R, Yasmin S (2003) Protocorm like bodies and plantlet regeneration from Dendrobium formosum Leaf Callus. Asian J Plant Sci 2:955–957

    Article  Google Scholar 

  • Ng TB, Liu J, Wong JH et al (2012) Review of research on Dendrobium, a prized folk medicine. Appl Microbiol Biotechnol 93:1795–1803

    Article  CAS  PubMed  Google Scholar 

  • Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5:27986–28006

    Article  CAS  Google Scholar 

  • Nuraini A, Heriliya W, Suminar E, Marliana E (2010) Responses of protocorm like bodies hybrid Dendrobium orchid on various types and concentration of cytokinin and auxin on Murashige and Skoog (MS) medium. In: International seminar on horticulture to support food security. Bandar Lampung, Indonesia, pp 130–135

  • Ochoa-Villarreal M, Howat S, Hong SM et al (2016) Plant cell culture strategies for the production of natural products. BMB Rep 49:149–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pant B (2014) Application of plant cell and tissue culture for the production of phytochemicals in medicinal plants. In: Adhikari R, Thapa S (eds) Infectious disease and nanomedicine II. Springer, Berlin, pp 25–41

    Chapter  Google Scholar 

  • Pant B, Thapa D (2012) In vitro mass propagation of an epiphytic orchid, Dendrobium primulinum Lindl. through shoot tip culture. Afr J Biotechnol 11:9970–9974

    CAS  Google Scholar 

  • Pant B, Shrestha S, Pradhan S (2011) In vitro seed germination and seedling development of Phaius tancarvilleae (L’Her.) Blume. Sci World 9:50–52

    Article  Google Scholar 

  • Pant B, Joshi PR, Maharjan S et al (2021a) Comparative cytotoxic activity of wild harvested stems and in vitro-raised protocorms of Dendrobium chryseum Rolfe in human cervical carcinoma and glioblastoma cell lines. Adv Pharmacol Pharm Sci 2021:8839728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pant B, Paudel MR, Joshi PR (2021b) Orchids as potential sources of anticancer agents: our experience. Annapurna J Health Sci 1:42–51

    Article  Google Scholar 

  • Pant B, Paudel MR, Chand MB, Wagner SH (2016) A treasure trove of orchids in Central Nepal. Central Department of Botany, Tribhuvan University, Kirtipur

    Google Scholar 

  • Pant B, Pradhan S, Paudel MR et al (2019) Various culture techniques for the mass propagation of medicinal orchids from Nepal. Acta Hortic 1262:109–124

    Article  Google Scholar 

  • Park CM, Kwon JC, Han NK et al (2014) Comparative study of protocorm-like body and multiple shoots from Dendrobium candidum on biological activities. J Soc Cosmet Sci Korea 40:29–36

    Google Scholar 

  • Park SY, Ho TT, Paek KY (2020) Medicinal orchids: production of bioactive compounds and biomass. In: Khasim SM, Hegde SN, Gonzalez-Arnao MT, Thammasiri K (eds) Orchid biology: recent trends and challenges. Springer, Singapore, pp 439–450

    Chapter  Google Scholar 

  • Parmar G, Pant B (2016) In vitro seed germination and seedling development of the orchid Coelogyne stricta (D. Don) Schltr. Afr J Biotechnol 15:105–109

    Article  CAS  Google Scholar 

  • Parthibhan S, Rao MV, Kumar TS (2015) In vitro regeneration from protocorms in Dendrobium aqueum Lindley—an imperiled orchid. J Genet Eng Biotechnol 13:227–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Paudel MR, Pant B (2017) Cytotoxic activity of crude extracts of Dendrobium amoenum and detection of bioactive compounds by GC-MS. Bot Orient Plant Sci 11:38–42

    Article  Google Scholar 

  • Paudel MR, Pradhan S, Pant B (2012) In vitro seed germination and seedling development of Esmeralda clarkei Rchb.f. (Orchidaceae). Plant Tissue Cult Biotechnol 22:107–111

    Article  Google Scholar 

  • Paudel MR, Chand B, Karki N, Pant B (2015) Antioxidant activity and total phenolic and flavonoid contents of Dendrobium amoenum Wall. ex Lindl. Bot Orient Plant Sci 9:20–26

    Article  Google Scholar 

  • Paudel MR, Chand MB, Pant B, Pant B (2017) Cytotoxic activity of antioxidant-Riched dendrobium longicornu. Pharmacogn J 9:499–503

    Article  CAS  Google Scholar 

  • Paudel MR, Chand MB, Pant B, Pant B (2018a) Antioxidant and cytotoxic activities of Dendrobium moniliforme extracts and the detection of related compounds by GC-MS. BMC Complement Altern Med 18:134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paudel MR, Rajbanshi N, Sah AK et al (2018b) Antibacterial activity of selected Dendrobium species against clinically isolated multiple drug resistant bacteria. Afr J Microbiol Res 12:426–432

    Article  CAS  Google Scholar 

  • Paudel MR, Chand MB, Pant B, Pant B (2019) Assessment of antioxidant and cytotoxic activities of extracts of Dendrobium crepidatum. Biomolecules 9:478

    Article  CAS  PubMed Central  Google Scholar 

  • Paudel MR, Bhattarai HD, Pant B (2020) Traditionally used Medicinal Dendrobium: a promising source of active anticancer constituents. In: Merillon JM, Kodja H (eds) Orchids phytochemistry, biology and horticulture. Springer, Cham

    Google Scholar 

  • Pradhan S, Pant B (2009) In vitro seed germination in Cymbidium elegans Lindl. and Dendrobium densiflorum Lindl. ex Wall. (Orchidaceae ). Bot Orient Plant Sci 6:100–102

    Article  Google Scholar 

  • Pradhan S, Paudel YP, Pant B (2013) Efficient regeneration of plants from shoot tip explants of Dendrobium densiflorum Lindl., a medicinal orchid. Afr J Biotechnol 12:1378–1383

    CAS  Google Scholar 

  • Prasad R, Koch B (2016) In vitro anticancer activities of ethanolic extracts of Dendrobium crepidatum and Dendrobium chrysanthum against T-cell lymphoma. J Cytol Histol 7:432

    Google Scholar 

  • Sahaya SB, Chitra Devi B, Servin WP, Sarmad M (2012) Ex situ conservation of endemic orchids of Western Ghats, Tamilnadu, India via asymbiotic seed germination. Adv Appl Sci Res 3:3339–3343

    Google Scholar 

  • Shah S, Shrestha R, Maharjan S et al (2019) Isolation and characterization of plant growth-promoting endophytic fungi from the roots of Dendrobium moniliforme. Plants 8:5–16

    Article  CAS  Google Scholar 

  • Sheela VL, Sarada S, Anita S (2006) Development of protocorm-like bodies and shoots in Dendrobium cv. Sonia following gamma irradiation. J Trop Agric 44:86–87

    CAS  Google Scholar 

  • Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng Biotechnol 111:187–228

    CAS  PubMed  Google Scholar 

  • Sut S, Maggi F, Dall’Acqua S (2017) Bioactive secondary metabolites from orchids (Orchidaceae). Chem Biodivers 14:1700172

    Article  CAS  Google Scholar 

  • Tai A, Iomori A, Ito H (2017) Structural evidence for the DPPH radical-scavenging mechanism of 2-O-α-d-glucopyranosyl-l-ascorbic acid. Bioorgan Med Chem 25:5303–5310

    Article  CAS  Google Scholar 

  • van de Loosdrecht AA, Beelen RHJ, Ossenkoppele GJ et al (1994) A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J Immunol Methods 174:311–320

    Article  PubMed  Google Scholar 

  • Wang LF, Zhang HY (2003) A theoretical investigation on DPPH radical-scavenging mechanism of edaravone. Bioorgan Med Chem Lett 13:3789–3792

    Article  CAS  Google Scholar 

  • Wattanathamsan O, Treesuwan S, Sritularak B, Pongrakhananon V (2018) Cypripedin, a phenanthrenequinone from Dendrobium densiflorum, sensitizes non-small cell lung cancer H460 cells to cisplatin-mediated apoptosis. J Nat Med 72:503–513

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Wen KS, Ruan X et al (2018) Response of plant secondary metabolites to environmental factors. Molecules 23:762

    Article  PubMed Central  CAS  Google Scholar 

  • Yeung EC (2017) A perspective on orchid seed and protocorm development. Bot Stud 58:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yong JWH, Ge L, Ng YF, Tan SN (2009) The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules 14:5144–5164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng SJ, Wu KL, da Silva JAT et al (2012) Asymbiotic seed germination, seedling development and reintroduction of Paphiopedilum wardii Sumerh., an endangered terrestrial orchid. Sci Hortic (amsterdam) 138:198–209

    Article  Google Scholar 

  • Zhao P, Wu F, Feng FS, Wang WJ (2008) Protocorm-like body (PLB) formation and plant regeneration from the callus culture of Dendrobium candidum Wall ex Lindl. Vitr Cell Dev Biol Plant 44:178–185

    Article  CAS  Google Scholar 

  • Zheng Q, Qiu D, Liu X et al (2015) Antiproliferative effect of Dendrobium catenatum Lindley polypeptides against human liver, gastric and breast cancer cell lines. Food Funct 6:1489–1495

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Emeritus Prof. Dr. Acram Taji from Australia for critical review of the manuscript.

Funding

KOICA/KU-Integrated Rural Development Project (Grant No. 01) granted to Prof. Dr. Bijaya Pant.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection and analysis were performed by BP, MRP, KC, PRJ and BBT. The first draft of the manuscript was written by BP, MRP and BBT. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bijaya Pant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pant, B., Chand, K., Paudel, M.R. et al. Micropropagation, antioxidant and anticancer activity of pineapple orchid: Dendrobium densiflorum Lindl. J. Plant Biochem. Biotechnol. 31, 399–409 (2022). https://doi.org/10.1007/s13562-021-00692-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-021-00692-y

Keywords

Navigation