A protocol for functional study of genes in Brassica juncea by Agrobacterium-mediated transient expression: applicability in other Brassicaceae

Abstract

Agrobacterium-mediated transient expression in plant organs is a quick and reliable method for studying gene functions. Due to the significance of transient transformation, substantial efforts have been dedicated to developing such protocols in various plants including the model Arabidopsis thaliana. Despite the importance, a reliable protocol is still lacking in Brassicaceae due to their recalcitrance towards Agrobacterium-mediated transient transformation. We have developed protocols for transient expression in Brassica juncea (PI 211000) and tested three other Brassica sp. for the suitability of the protocol. Co-infiltration of a bacteria-derived avirulence protein AvrPto1 significantly improved expression in B. juncea cotyledonary leaves. The protocol was used successfully in studying protein localization, protein–protein interaction by co-immunoprecipitation assay and transient silencing in B. juncea indicating it to be an excellent model system for transient expression. The efficiency of the protocol varied between Brassica sp. and depended highly on the Agrobacterium strain used. The protocol would be useful in designing functional analyses of genes using transient expression in Brassicaceae, including Arabidopsis and enable inclusion of mutant lines for such studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

Avr:

Avirulence

GUS:

β-Glucuronidase

GFP:

Green fluorescent protein

CFP:

Cyan fluorescent protein

BjTTP:

Brassica juncea tetratricopeptide

BjHCF:

Brassica juncea high-chlorophyll fluorescence

BjNRAMP:

Brassica juncea natural resistance associated macrophage protein

References

  1. Abramovitch RB, Anderson JC, Martin GB (2006) Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol 7:601–611

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Barampuram S, Zhang ZJ (2011) Recent advances in plant transformation. Methods Mol Biol 701:1–35

    CAS  PubMed  Google Scholar 

  3. Berger B, Stracke R, Yatusevich R, Weisshaar B, Flugge UI, Gigolashvili T (2007) A simplified method for the analysis of transcription factor-promoter interactions that allows high-throughput data generation. Plant J 50:911–916

    CAS  PubMed  Google Scholar 

  4. Campanoni P, Sutter JU, Davis CS, Littlejohn GR, Blatt MR (2007) A generalized method for transfecting root epidermis uncovers endosomal dynamics in Arabidopsis root hairs. Plant J 51:322–330

    CAS  PubMed  Google Scholar 

  5. Cardillo AB, Rodriguez Talou J, Giulietti AM (2016) Establishment, culture, and scale-up of Brugmansia candida hairy roots for the production of tropane alkaloids. Methods Mol Biol 1391:173–186

    CAS  PubMed  Google Scholar 

  6. Chilton MD, Drummond MH, Merio DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    CAS  PubMed  Google Scholar 

  7. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Das S, Sen M, Saha C, Chakraborty D, Das A, Banerjee M, Seal A (2011) Isolation and expression analysis of partial sequences of heavy metal transporters from Brassica juncea by coupling high throughput cloning with a molecular fingerprinting technique. Planta 234:139–156

    CAS  PubMed  Google Scholar 

  9. Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8:380–386

    CAS  PubMed  Google Scholar 

  10. Escudero J, Hohn B (1997) Transfer and Integration of T-DNA without Cell Injury in the Host Plant. The Plant Cell 9(12):2135

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Goossens J, De Geyter N, Walton A, Eeckhout D, Mertens J, Pollier J, Fiallos-Jurado J, De Keyser A, De Clercq R, Van Leene J, Gevaert K, De Jaeger G, Goormachtig S, Goossens A (2016) Isolation of protein complexes from the model legume Medicago truncatula by tandem affinity purification in hairy root cultures. Plant J 88:476–489

    CAS  PubMed  Google Scholar 

  12. Gordon JE, Christie PJ (2014) The Agrobacterium Ti plasmids. Microbiol Spectr 2:1–18

    CAS  Google Scholar 

  13. Gutièrrez-Pesce P, Taylor K, Muleo R, Rugini E (1998) Somatic embryogenesis and shoot regeneration from transgenic roots of the cherry rootstock Colt (Prunus avium × P. pseudocerasus) mediated by pRi 1855 T-DNA of Agrobacterium rhizogenes. Plant Cell Rep 17:574–580

    PubMed  Google Scholar 

  14. Harvey JJ, Lincoln JE, Gilchrist DG (2008) Programmed cell death suppression in transformed plant tissue by tomato cDNAs identified from an Agrobacterium rhizogenes-based functional screen. Mol Genet Genom MGG 279:509–521

    CAS  Google Scholar 

  15. Holsters M, de Waele D, Depicker A, Messens E, van Montagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163:181–187

    CAS  PubMed  Google Scholar 

  16. Horsch RB, Klee HJ, Stachel S, Winans SC, Nester EW, Rogers SG, Fraley RT (1986) Analysis of Agrobacterium tumefaciens virulence mutants in leaf discs. Proc Natl Acad Sci USA 83:2571–2575

    CAS  PubMed  Google Scholar 

  17. Hwang HH, Yu M, Lai EM (2017) Agrobacterium-mediated plant transformation: biology and applications. Arabidopsis Book 15:e0186

    PubMed  PubMed Central  Google Scholar 

  18. Ivanov S, Harrison MJ (2014) A set of fluorescent protein-based markers expressed from constitutive and arbuscular mycorrhiza-inducible promoters to label organelles, membranes and cytoskeletal elements in Medicago truncatula. Plant J 80:1151–1163

    CAS  PubMed  Google Scholar 

  19. Ivanov S, Fedorova EE, Limpens E, De Mita S, Genre A, Bonfante P, Bisseling T (2012) Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proc Natl Acad Sci USA 109:8316–8321

    CAS  PubMed  Google Scholar 

  20. Jen GC, Chilton MD (1986) Activity of T-DNA borders in plant cell transformation by mini-T plasmids. J Bacteriol 166:491–499

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Koroleva OA, Tomlinson ML, Leader D, Shaw P, Doonan JH (2005) High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions. Plant J 41:162–174

    CAS  PubMed  Google Scholar 

  22. Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J (2015) Transient plant transformation mediated by Agrobacterium tumefaciens: principles, methods and applications. Biotechnol Adv 33:1024–1042

    CAS  PubMed  Google Scholar 

  23. Li JF, Park E, von Arnim AG, Nebenfuhr A (2009) The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods 5:6

    PubMed  PubMed Central  Google Scholar 

  24. Li GYL, Li F, Zhang S, Zhang H, Qian W, Fang Z, Wu J, Wang X, Zhang S, Sun R (2018) Research progress on Agrobacterium tumefaciens-based transgenic technology in Brassica rapa. Horticult Plant J 4(3):126–132

    Google Scholar 

  25. Lioshina LG, Bulko OV (2014) Plant regeneration from hairy roots and calluses of periwinkle Vinca minor L. and foxglove purple Digitalis purpurea L. Cytol Genet 48:302–307

    Google Scholar 

  26. Ma L, Lukasik E, Gawehns F, Takken FL (2012) The use of agroinfiltration for transient expression of plant resistance and fungal effector proteins in Nicotiana benthamiana leaves. Methods Mol Biol 835:61–74

    CAS  PubMed  Google Scholar 

  27. Marik A, Naiya H, Das M, Mukherjee G, Basu S, Saha C, Chowdhury R, Bhattacharyya K, Seal A (2016) Split-ubiquitin yeast two-hybrid interaction reveals a novel interaction between a natural resistance associated macrophage protein and a membrane bound thioredoxin in Brassica juncea. Plant Mol Biol 92:519–537

    CAS  PubMed  Google Scholar 

  28. Marion J, Bach L, Bellec Y, Meyer C, Gissot L, Faure JD (2008) Systematic analysis of protein subcellular localization and interaction using high-throughput transient transformation of Arabidopsis seedlings. Plant J 56:169–179

    CAS  PubMed  Google Scholar 

  29. Miki D, Shimamoto K (2004) Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol 45:490–495

    CAS  PubMed  Google Scholar 

  30. Moloney MM, Walker JM, Sharma KK (1989) High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8:238–242

    CAS  PubMed  Google Scholar 

  31. Nelson BK, Cai X, Nebenfuhr A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    CAS  PubMed  Google Scholar 

  32. Noel LD, Cagna G, Stuttmann J, Wirthmuller L, Betsuyaku S, Witte CP, Bhat R, Pochon N, Colby T, Parker JE (2007) Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell 19:4061–4076

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Porter JR, Flores H (1991) Host range and implications of plant infection by Agrobacterium rhizogenes. Crit Rev Plant Sci 10:387–421

    Google Scholar 

  34. Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K, Garcha J, Winte S, Masson H, Inagaki S, Federici F, Sinha N, Deal RB, Bailey-Serres J, Brady SM (2014) Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol 166:455–469

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rosas-Diaz T, Cana-Quijada P, Amorim-Silva V, Botella MA, Lozano-Duran R, Bejarano ER (2017) Arabidopsis NahG plants as a suitable and efficient system for transient expression using Agrobacterium tumefaciens. Mol Plant 10:353–356

    CAS  PubMed  Google Scholar 

  36. Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127:1466–1475

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Stachel SE, Nester EW (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J 5(7):1445–1454

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ (1999) Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci USA 96:14153–14158

    CAS  PubMed  Google Scholar 

  39. Toro N, Datta A, Yanofsky M, Nester E (1988) Role of the overdrive sequence in T-DNA border cleavage in Agrobacterium. Proc Natl Acad Sci USA 85:8558–8562

    CAS  PubMed  Google Scholar 

  40. Tsuda K, Qi Y, le Nguyen V, Bethke G, Tsuda Y, Glazebrook J, Katagiri F (2012) An efficient Agrobacterium-mediated transient transformation of Arabidopsis. Plant J 69:713–719

    CAS  PubMed  Google Scholar 

  41. Tzfira T, Vaidya M, Citovsky V (2004) Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431:87–92

    CAS  PubMed  Google Scholar 

  42. Van den Ackerveken G, Marois E, Bonas U (1996) Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87:1307–1316

    PubMed  Google Scholar 

  43. Van der Hoorn RA, Laurent F, Roth R, De Wit PJ (2000) Agroinfiltration is a versatile tool that facilitates comparative analyses of Avr9/Cf-9-induced and Avr4/Cf-4-induced necrosis. Molecul Plant Microbe Interact 13:439–446

    Google Scholar 

  44. Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273

    CAS  PubMed  Google Scholar 

  45. Wu HY, Liu KH, Wang YC, Wu JF, Chiu WL, Chen CY, Wu SH, Sheen J, Lai EM (2014) AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods 10:19

    PubMed  PubMed Central  Google Scholar 

  46. Yamazaki Y, Kitajima M, Arita M, Takayama H, Sudo H, Yamazaki M, Aimi N, Saito K (2004) Biosynthesis of camptothecin. In silico and in vivo tracer study from [1-13C]glucose. Plant Physiol 134:161–170

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang L, Wang H, Liu J, Li L, Fan Y, Wang X, Song Y, Sun S, Wang L, Zhu X (2008) A simple and effective system for foreign gene expression in plants via root absorption of agrobacterial suspension. J Biotechnol 134:320–324

    CAS  PubMed  Google Scholar 

  48. Yasmin A, Debener T (2010) Transient gene expression in rose petals via Agrobacterium infiltration. Plant Cell Tissue Organ Cult 102:245–250

    CAS  Google Scholar 

  49. Young JM, Kuykendall LD, Martinez-Romero E, Kerr A, Sawada H (2001) A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int J Syst Evol Microbiol 51:89–103

    CAS  PubMed  Google Scholar 

  50. Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang Z-Y, Li G-Y, Wang J-L, Guo X-J, Wang Z, Tan X-L (2017) Establishment of rapeseed (Brassica Napus L.) cotyledon transient transformation system for gene function analysis. Pak J Bot 49:2227–2233

    CAS  Google Scholar 

  52. Zottini M, Barizza E, Costa A, Formentin E, Ruberti C, Carimi F, Lo Schiavo F (2008) Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells. Plant Cell Rep 27:845–853

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Fumiaki Katagiri, University of Minnesota Twin Cities, for providing us the AvrPto1 clone. The pMDC vectors were obtained from ABRC. We also thank Dr. Naveen Bisht, NIPGR, India for providing us the B. nigra, B. rapa and B. napus seeds. We thank Dr. Ronita Nag for her assistance with A. thaliana work. We acknowledge the Department of Biotechnology—Interdisciplinary Program in Life Sciences, the University of Calcutta for the confocal microscopy facility and Mr. Arijit Pal and Mr. Souvik Roy jointly for their technical assistance. The organellar markers in pCMU vectors were gifts from Prof. M. J. Harrison and obtained from Dr. Senjuti Sinha Roy, NIPGR, India. We thank Prof. Daisuke Miki and Prof. Ko Shimamoto for providing us with the pANDA35HK vector. Madhumanti Das acknowledges Council of Scientific and Industrial Research (CSIR) and Haraprasad Naiya acknowledges University Grants Commission (UGC) for their fellowships. The work was funded by Council of Scientific and Industrial Research (CSIR) [Project No. 38(1276)/10/EMR-II] and Department of Science and Technology (DST) [SERB/SR/SO/PS/19/2012], Govt. of India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anindita Seal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Expression of pCAMBIA1305.1-GUS containing catalase intron in different time point. GUS-plus gene was expressed transiently in B. juncea leaves 48hpi and 72hpi. n=15 (2 leaves/plant) (TIFF 7105 kb)

Figure S2

A scheme showing agroinfiltration of B. juncea leaves. B. juncea (or other Brassica sp) leaves were pricked at the abaxial side and infiltrated with desired constructs mixed with AvrPto1 containing Agrobacterium culture. Gene/protein expression was checked 72 hours post infiltration (hpi) (TIFF 66 kb)

Figure S3

Localization study with negative controls. (a) The untransformed leaf in the wavelength range of mCherry (upper panel) and CFP (middle panel). Leaf transformed with empty GFP (pMDC45) vector (lower panel). (b) The untransformed root in the wavelength range of mCherry (upper panel) and CFP (lower panel). B.F. bright field (Scale 20 µm), (each in 3 experimental replicates) (TIFF 841 kb)

Supplementary material 4 (DOCX 11 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Das, M., Naiya, H., Marik, A. et al. A protocol for functional study of genes in Brassica juncea by Agrobacterium-mediated transient expression: applicability in other Brassicaceae. J. Plant Biochem. Biotechnol. 29, 368–379 (2020). https://doi.org/10.1007/s13562-019-00543-x

Download citation

Keywords

  • Agrobacterium
  • Brassica juncea
  • Transient expression