Transcriptome analysis of flowering genes in mango (Mangifera indica L.) in relation to floral malformation

A Correction to this article was published on 22 January 2020

This article has been updated

Abstract

Flowering is a complicated developmental process of physiological and morphological stages under the control of a number of external signals and internal factors. Floral malformation occurring during flower development stage is serious constraint having crippling effect on mango flowering and production leading to heavy economic losses. In mango there is lack of information about the gene expression profile during flower development. We therefore performed transcriptome analysis of Mangifera indica cultivar Amrapalli, by isolating total RNA from different stages of bud development in healthy and malformed tissues. The next generation sequencing were performed using 2 × 150 PE chemistry on the Illumina NextSeq platform resulting in 20.31, 20.77, 20.32, 27.92 and 18.59 million PE reads in MB-1, MB-2, MB-3, HB-1 and HB-2 stages respectively. Higher differential expressions copy numbers of seven flowering genes (MYB30, TPL, bHLH, FTIP1, CDKC2, CPK33, and ATH1) were observed in both the healthybud and panicle development stages as compared to malformed bud development stages. Among the other differentially expressed pattern of flowering genes in six possible combinations, the highly upregulated genes are UBP12, EFS, AGL8, AGL14, AGL20, AGL24, KIN10, MYB30, SUS2, FTIP1, CCT and LDL2 and down regulated genes were like TIL1, TIC, DCL3, GA20OX3, CCT, AP1, AGL6, AGL8, MYB30, AGL8, GCT and GA3OX1. The data set provides information on transcripts putatively associated with embryonic flower, earlier flowering, flowering time control, terminal flower and mads-box protein in healthy and malformed tissues. Out of the observed differentially expressed genes, the transcript profiles of GA20OX3, AGL24 and LDL2, the key genes regulating floral transition and differentiation, were validated through qRT-PCR. Our study provides a resource for exploring the complex molecular mechanisms in flower development and malformations in mango.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Change history

  • 22 January 2020

    Correction to: Journal of Plant Biochemistry and Biotechnology

Abbreviations

AGL:

Agamous-Like

AP2:

Apetala2

ATH1:

Arabidopsis thaliana Homeobox Gene 1

bHLH:

Basic Helix–Loop–Helix

CCT:

CO, CO-like and Timing of Cab

CDF1:

Cycling DOF Factor 1

CDKC2:

Cyclin-Dependent Kinase

CLF:

Curly Leaf

COP1:

Constitutive Photomorphogenic 1

CPK6:

Calcium Dependent Protein Kinase 6

CRY2:

Cryptochrome 2

CUL3:

Cullin 3A

DCL3:

Dicer-Like 3

DEGs:

Differentially expressed genes

EFS:

Early flowering in short days

ELF3:

Early Flowering 3

EMF2:

Embryonic Flower 2

FC:

Fold change

FY:

Flowering time control protein FY

FKF1:

Flavin-Binding Kelch Repeat F box Protein

FLK:

Flowering locus KH domain

FTIP1:

FT-Interacting Protein 1

GA20ox3:

Gibberellin20-Oxidase 3

GA2-ox:

GA2-oxidase

GA3-ox:

GA2-oxidase

GCT:

Grand Central

GI:

Gigantea

GID1A:

Gibberellin Insensitive Dwarf1A

GID1B:

GA Insensitive Dwarf 1B

GID1C:

GA Insensitive Dwarf 1C

HB-1:

Healthy bud stage 1

HB16:

Homeobox Protein 16

HB-2:

Healthy bud stage 2

HUB1:

Histone Mono-Ubiquitination 1

INO80:

Inositol Requiring 80

JMJ14:

Jumonji 14

KIN10:

Kinase 10

LDL2:

Lysine Specific Demethylase Like 1

LHY:

Late Elongated Hypocotyl

LFY:

Leafy

LRB1:

Light-Response BTB 1

LWD2:

Light-Regulated WD 2

MB-1:

Single swollen malformed bud stage 1

MB-2:

Multiple malformed bud stage 2

MB-3:

Multiple malformed panicle development stage 3

MBD9:

Methyl-CPG-Binding Domain 9

NF-YB1:

Nuclear Factor Y Subunit B1

NUC:

Nut-Cracker

PIF:

Phytochrome-Interacting Factor

PIL6:

Phytochrome-Interacting Factor Like

PRR3:

Pseudo-Response Regulator 3

RAP2.7:

Related to AP2.7

REF6:

Relative to Early Flowering

RFI2:

Red and Far-Red Insensitive 2

RVE2:

Reveille 2

SDG25:

Set Domain Protein 25

SPL5:

Squamosa Promoter Binding Protein-LIKE 5

SPL9:

Squamosa Promoter Binding Protein-Like 9

SUS2:

Sucrose Synthase 2

SUS4:

Sucrose Synthase 4

SUVR5:

SU(VAR)3-9-Related Protein 5

SVP:

Short Vegetative Phase

TEM1:

Tempranillo 1

TIC:

Time for Coffee

TIL1:

Tilted 1

TPL:

Topless

TPS1:

Trehalose-6-Phosphate Synthase 1

UBC1:

Ubiquitin Carrier Protein 1

UBP12:

Ubiquitin-Specific Protease 12

UGT:

UDP-Glucosyl Transferase

VOZ1:

Vascular Plant one Zinc Finger Protein 1

References

  1. Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants 19:307–321

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Azim MK, Khan IA, Zhang Y (2014) Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome. Plant Mol Biol 85:193–208

    CAS  PubMed  Article  Google Scholar 

  3. Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P (1993) Physiological signals that induce flowering. Plant Cell 5:1147–1155

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Bouche F, Lobet G, Tocquin P, Perilleux C (2016) FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res 44(D1):D1167–D1171

    CAS  PubMed  Article  Google Scholar 

  6. Causier B, Ashworth M, Guo W, Davies B (2012) The TOPLESS interactome: a framework for gene repression in Arabidopsis. Plant Physiol 158:423–438

    CAS  PubMed  Article  Google Scholar 

  7. Chakrabarti DK (2011) Mango malformation. Springer, Berlin

    Book  Google Scholar 

  8. Chang Z, Li G, Liu J, Zhang Y, Ashby C, Liu D, Cramer CL, Huang X (2015) Bridger: a new framework for de novo transcriptome assembly using RNA-seq data. Genome Biol 16:30

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. Crespo M, Cazorla FM, Hermoso JM, Guirado E, Maymon M, Torés JA, Freeman S, de Vicente A (2012) First report of mango malformation disease caused by Fusarium mangiferae in Spain. Plant Dis 96:286

    CAS  PubMed  Article  Google Scholar 

  10. Cui X, Lu F, Li Y, Xue Y, Kang Y, Zhang S, Qiu Q, Cui X, Zheng S, Liu B, Xu X (2013) Ubiquitin-specific proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis. Plant Physiol 162:897–906

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Danhua J, Yang W, He Y, Amasino RM (2007) Arabidopsis relatives of the human lysine-specific demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. Plant Cell 19(10):2975–2987

    Article  CAS  Google Scholar 

  12. Dautt-Castro M, Ochoa-Leyva A, Contreras-Vergara CA, Pacheco-Sanchez MA, Casas-Flores S, Sanchez-Flores A, Kuhn DN, Islas-Osuna MA (2015) Mango (Mangifera indica L.) cv. Kent fruit mesocarp de-novo transcriptome assembly identifies gene families important for ripening. Front Plant Sci 6:62

    PubMed  PubMed Central  Article  Google Scholar 

  13. Freeman S, Shtienberg D, Maymon M, Levin AG, Ploetz RC (2014) New insights into mango malformation disease epidemiology lead to a new integrated management strategy for subtropical environments. Plant Dis 98:1456–1466

    PubMed  Article  Google Scholar 

  14. Gamliel-Atinsky E, Sztejnberg A, Maymon M, Vintal H, Shtienberg D, Freeman S (2009) Infection dynamics of Fusarium mangiferae, causal agent of mango malformation disease. Phytopathology 99:775–781

    CAS  PubMed  Article  Google Scholar 

  15. Gamliel-Atinsky E, Freeman S, Maymon M, Belausov E, Ochoa R, Bauchan G, Skoracka A, Pena J, Palevsky E (2010) The role of eriophyoids in fungal pathogen epidemiology, mere association or true interaction? Exp Appl Acarol 51:191–204

    PubMed  Article  Google Scholar 

  16. Gómez MC, Sablowski R (2008) Arabidopsis thaliana Homeobox Gene-1 establishes the basal boundaries of shoot organs and controls stem growth. Plant Cell 20:2059–2072

    Article  CAS  Google Scholar 

  17. Gregis V, Sessa A, Colombo L, Kater MM (2008) AGAMOUS-LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis. Plant J 56:891–902

    CAS  PubMed  Article  Google Scholar 

  18. Hongbao M, Young J, Shen C (2008) RNA, DNA and protein isolation using TRIZOL reagent. Nat Sci 6:1545–1740

    Google Scholar 

  19. Islam MZ, Hu XM, Jin LF, Liu YZ, Peng SA (2014) Genome-wide identification and expression profile analysis of citrus sucrose synthase genes: investigation of possible roles in the regulation of sugar accumulation. PLoS ONE 9:e113623

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. Kolar J, Senkova J (2008) Reduction of mineral nutrient availability accelerates flowering of Arabidopsis thaliana. J Plant Physiol 165:1601–1609

    CAS  PubMed  Article  Google Scholar 

  21. Kotoda N, Matsuo S, Honda I, Yano K, Shimizu T (2016) Isolation and functional analysis of two Gibberellin 20-oxidase genes from Satsuma mandarin (Citrus unshiu Marc.). Hortic J 85(2):128–140

    CAS  Article  Google Scholar 

  22. Kvas M, Steenkamp ET, Al Adawi AO, Deadman ML, Al Jahwari AA, Marasas WF, Wingfield BD, Ploetz RC, Wingfield MJ (2007) Fusarium mangiferae associated with mango malformation in the Sultanate of Oman. Eur J Plant Pathol 121:195–199

    Article  CAS  Google Scholar 

  23. Li Z, Wang J, Zhang X, Lei M, Fu Y, Zhang J, Wang Z, Xu L (2016) Transcriptome sequencing determined flowering pathway genes in Aechmea fasciata treated with ethylene. J Plant Growth Regul 35:316–329

    CAS  Article  Google Scholar 

  24. Lima CS, Pfenning LH, Costa SS, Abreu LM, Leslie JF (2012) Fusarium tupiense sp. nov., a member of the Gibberella fujikuroi complex that causes mango malformation in Brazil. Mycologia 104:1408–1419

    CAS  PubMed  Article  Google Scholar 

  25. Liu L, Liu C, Hou X, Xi W, Shen L, Tao Z, Wang Y, Yu H (2012) FTIP1 is an essential regulator required for florigen transport. PLoS Biol 10:e1001313

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Liu L, Zhang J, Adrian J, Gissot L, Coupland G, Yu D, Turck F (2014) Elevated levels of MYB30 in the phloem accelerate flowering in Arabidopsis through the regulation of FLOWERING LOCUS T. PLoS ONE 9:e89799

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. Liu F, Wu JB, Zhan RL, Ou XC (2016a) Transcription profiling analysis of mango–fusarium mangiferae interaction. Front Microbiol 7:14–43

    Google Scholar 

  28. Liu K, Feng S, Pan Y, Zhong J, Chen Y, Yuan C, Li H (2016b) Transcriptome analysis and identification of genes associated with floral transition and flower development in sugar apple (Annona squamosa L.). Front Plant Sci 7:1695

    PubMed  PubMed Central  Google Scholar 

  29. Luria N, Sela N, Yaari M, Feygenberg O, Kobiler I, Lers A, Prusky D (2014) De-novo assembly of mango fruit peel transcriptome reveals mechanisms of mango response to hot water treatment. BMC Genom 15:957

    Article  Google Scholar 

  30. Lv YC, Pu JJ, Qia YX, Xie YX, Lu Y, Zhang X, Zhang H, Zhang HQ (2013) Fusarium proliferatum caused mango malformation disease in Panzhihua and Huaping Provinces of China. Acta Hortic 992:423–428

    Article  Google Scholar 

  31. Lyons R, Rusu A, Stiller J, Powell J, Manners JM, Kazan K (2015) Investigating the association between flowering time and defense in the Arabidopsis thalianaFusarium oxysporum interaction. PLoS ONE 10:e0127699

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  32. Mandel MA, Yanofsky MF (1995) The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell 7:1763–1771

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Marasas WFO, Ploetz RC, Wingfield MJ, Steenkamp ET (2006) Mango malformation disease and the associated Fusarium species. Phytopathology 96(6):667–672

    CAS  PubMed  Article  Google Scholar 

  34. Martinez C, Pons E, Prats G, Leon J (2004) Salicylic acid regulates flowering time and links defense responses and reproductive development. Plant J 37:209–217

    CAS  PubMed  Article  Google Scholar 

  35. Nagaraja A, Usha K, Singh B, Singh SK, Umamaheswari (2011) Effect of temperature and relative humidity on growth and sporulation of Fusarium mangiferae under in vitro conditions. Indian J Hortic 68:36–38

    Google Scholar 

  36. Ng S, Giraud E, Duncan O, Law SR, Wang Y, Xu L, Narsai R, Carrie C, Walker H, Day DA, Blanco NE (2013) Cyclin-dependent kinase E1 (CDKE1) provides a cellular switch in plants between growth and stress responses. J Biol Chem 288:3449–3459

    CAS  PubMed  Article  Google Scholar 

  37. Nie S, Li C, Wang Y, Xu L, Muleke EM, Tang M, Sun X, Liu L (2016) Transcriptomic analysis identifies differentially expressed genes (DEGs) associated with bolting and flowering in radish (Raphanus sativus L.). Front Plant Sci. 7:682

    PubMed  PubMed Central  Google Scholar 

  38. Nor M, Nik MI, Salleh B, Leslie F (2013) Fusarium species associated with mango malformation in peninsular Malaysia. J Phytopathol 161:617–624

    Article  CAS  Google Scholar 

  39. Otero-Colina G, Rodríguez-Alvarado G, Fernández-Pavía S, Maymon M, Ploetz RC, Aoki T, O’Donnell K, Freeman S (2010) Identification and characterization of a novel etiological agent of mango malformation disease in Mexico, Fusarium mexicanum sp. nov. Phytopathology 100:1176–1184

    CAS  PubMed  Article  Google Scholar 

  40. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Proveniers M, Rutjens B, Brand M, Smeekens S (2007) The Arabidopsis TALE homeobox gene ATH1 controls floral competency through positive regulation of FLC. Plant J 52:899–913

    CAS  PubMed  Article  Google Scholar 

  42. Riboni M, Galbiati M, Tonelli C, Conti L (2013) GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS. Plant Physiol 162:1706–1719

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Rodríguez AG, Fernández-Pavía SP, Ploetz RC, Valenzuela-Vázquez MA (2007) Fusarium sp., different from Fusarium oxysporum and F. mangiferae, is associated with mango malformation in Michoacán, Mexico. Plant Pathol. 57:781

    Article  Google Scholar 

  44. Sawa M, Kay SA (2011) GIGANTEA directly activates flowering locus T in Arabidopsis thaliana. Proc Natl Acad Sci USA 108:11698–11703

    CAS  PubMed  Article  Google Scholar 

  45. Sherman A, Rubinstein M, Eshed R, Benita M, Ish-Shalom M, Sharabi-Schwager M, Rozen A, Saada D, Cohen Y, Ophir R (2015) Mango (Mangifera indica L.) germplasm diversity based on single nucleotide polymorphisms derived from the transcriptome. BMC Plant Biol. 15:277

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. Simpson GG (2004) The autonomous pathway: epigenetic and post-transcriptional gene regulation in the control of Arabidopsis flowering time. Curr Opin Plant Biol 7:570–574

    CAS  PubMed  Article  Google Scholar 

  47. Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296:285–289

    CAS  PubMed  Article  Google Scholar 

  48. Sinniah GD, Adikaram NK, Vithanage IS, Abayasekara CL, Maymon M, Freeman S (2013) First report of mango malformation disease caused by Fusarium mangiferae in Sri Lanka. Plant Dis 97:427

    CAS  PubMed  Article  Google Scholar 

  49. Srivastava S, Singh RK, Pathak G, Goel R, Asif MH, Sane AP, Sane VA (2016) Comparative transcriptome analysis of unripe and mid-ripe fruit of Mangifera indica (var.“Dashehari”) unravels ripening associated genes. Sci Rep 6:32557

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Tamang BG, Fukao T (2015) Plant adaptation to multiple stresses during submergence and following de-submergence. Int J Mol Sci 16:30164–30180

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Thomas B, Vince-Prue D (1996) Photoperiodism in plants. Academic Press, London

    Google Scholar 

  52. Usha K, Gambhir PN, Sharma HC, Goswami AM, Singh B (1994) Relationship of molecular mobility of water with floral malformation in mango as assessed by nuclear magnetic resonance. Sci Hortic 59:291–295

    Article  Google Scholar 

  53. Usha K, Sharma HC, Goswami AM, Singh B (1996) Photosynthetic efficiency and translocation pattern in relation to floral malformation in mango. In: Proceedings of the international conference on tropical fruits, Kuala Lumpur, Malaysia. 23–26 July, pp 143–148

  54. Usha K, Goswami AM, Sharma HC, Singh B, Pande PC (1997) Scanning electron microscopic studies on floral malformation in mango. Sci Hortic 71:127–130

    Article  Google Scholar 

  55. Usha K, Singh B, Praseetha P, Deepa N, Agarwal DK, Agarwal R, Nagaraja A (2009) Antifungal activity of Datura stramonium, Calotropis gigantea and Azadirachta indica against Fusarium mangiferae and floral malformation in mango. Eur J Plant Pathol 124:637–657

    Article  Google Scholar 

  56. Usha K, Singh B, Kamil D (2019) Hormonal profiling of the Fusarium mangiferae infected mango buds in relation to mango malformation. Sci Hortic 254:148–154

    CAS  Article  Google Scholar 

  57. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Watt G (1891) The mango tree. A dictionary of the economic products of India, vol 5. Govt. Printing Press, Calcutta, p 149

    Google Scholar 

  59. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34(Web Server issue):W293–W297

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Youssef SA, Maymon M, Zveibil A, Klein-Gueta D, Sztejnberg A, Shalaby AA, Freeman S (2007) Epidemiological aspects of mango malformation disease caused by Fusarium mangiferae and source of infection in seedlings cultivated in orchards in Egypt. Plant Pathol 56:257–263

    CAS  Article  Google Scholar 

  61. Yu H, Xu Y, Tan EL, Kumar PP (2002) AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc Natl Acad Sci 99(25):16336–16341

    CAS  PubMed  Article  Google Scholar 

  62. Zhan RL, Yang SJ, Ho HH, Liu F, Zhao YL, Chang JM, He YB (2010) Mango malformation disease in south China caused by Fusarium proliferatum. J Phytopathol 158:721–725

    Article  Google Scholar 

  63. Zhao M, Yang S, Liu X, Wu K (2015) Arabidopsis histone demethylases LDL1 and LDL2 control primary seed dormancy by regulating DELAY OF GERMINATION 1 and ABA signaling-related genes. Front Plant Sci. 6:159

    PubMed  PubMed Central  Google Scholar 

  64. Zheng X, Li X, Ge C, Chang J, Shi M, Chen J, Qiao L, Chang Z, Zheng J, Zhang J (2017) Characterization of the CCT family and analysis of gene expression in Aegilops tauschii. PLoS ONE 12:e0189333

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. Zhu Y, Schluttenhoffer CM, Wang P, Fu F, Thimmapuram J, Zhu JK, Lee SY, Yun DJ, Mengiste T (2014) CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and-independent functions in Arabidopsis. Plant Cell 26:4149–4170

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Director, ICAR—Indian Agricultural Research Institute, New Delhi for financial support provided for conducting the studies.

Author information

Affiliations

Authors

Contributions

UK, BS performed the experiment and manuscript drafting. PKJ and AY carried out bioinformatics analysis of functional annotation, GO, KEGG pathway analysis, TF’s analysis, DEG’s analysis and approval of final version of manuscript was done by NKS, UK, PKJ, and NT. All authors have read and approved the final manuscript. VR and BS had performed validation using qRT-PCR.

Corresponding author

Correspondence to K. Usha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yadav, A., Jayaswal, P.K., Venkat Raman, K. et al. Transcriptome analysis of flowering genes in mango (Mangifera indica L.) in relation to floral malformation. J. Plant Biochem. Biotechnol. 29, 193–212 (2020). https://doi.org/10.1007/s13562-019-00541-z

Download citation

Keywords

  • Differentially expressed genes (DEG’s)
  • Flowering
  • Mango
  • Malformation
  • Transcriptome
  • Metabolic pathways