Skip to main content

Advertisement

Log in

FIT (Fer-like iron deficiency-induced transcription factor) in plant iron homeostasis: genome-wide identification and bioinformatics analyses

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

FIT (Fer-like iron deficiency-induced transcription factor) is one of the key regulators in uptake of iron (Fe) for plants. In this study, FIT genes from 10 plant species were identified at genome-wide scale and analyzed by computational tools. Our analyses showed that subcellular localizations of all FITs were in nucleus and FITs were generally acidic proteins. While a clear monocot–dicot divergence was observed, exon numbers were found as three and four for monocots and dicots, respectively. Arg and Leu were established as most repetitive amino acid residues in conserved regions of all FITs. All FITs had different shape and pocket numbers along with different secondary and tertiary structures despite they contained same domain structure as PF00010 (helix-loop-helix DNA-binding domain). We observed that FIT is an important target of several biological processes and a component of various metabolic pathways regulating root development and stress responses on exposure to various environmental stressors. Moreover, FITs seem to be located in heterochromatic area of chromosome and its transcription may also be upregulated on the exposure of stressors. The FITs were established to interact with Pi and Cu uptake machinery, other than iron acquisition, under Pi and Cu deficiency. Consequently, FITs can be proposed to take part in different and specific metabolic pathways together with Fe acquisition. The miRNA analyses showed that miRNAs targeting FITs take part in abiotic and biotic stress metabolism together with Pi uptake mechanism. Lastly, involvement of FIT in abiotic stress response was stimulated by phytohormones such as ABA and ethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

bHLH:

Basic helix-loop-helix

FIT:

Fer-like iron deficiency-induced transcription factor

FRO2:

Ferric reductase oxidase

IRT1:

Iron-regulated transporter1

NAS:

Nicotianamine synthase

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaquchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aung K, Lin SI, Wu CC, Huang YT, Su C, Chiou TJ (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141:1000–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey TL, Johnson J, Grant CE, Noble WS (2015) The MEME suite. Nucleic Acids Res 43:39–49

    Article  CAS  Google Scholar 

  • Banks IR, Zhang Y, Wiggins BE, Heck GR, Ivashuta S (2012) RNA decoys: an emerging component of plant regulatory networks? Plant Signal Behav 7:1188–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bournier M, Tissot N, Mari S, Boucherez J, Lacombe E, Briat JF, Gaymard F (2013) Arabidopsis ferritin 1 (atfer1) gene regulation by the phosphate starvation response 1 (atphr1) transcription factor reveals a direct molecular link between iron and phosphate homeostasis. J Biol Chem 288:22670–22680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brumbarova T, Bauer P, Ivanov R (2015) Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci 20:124–133

    Article  CAS  PubMed  Google Scholar 

  • Celma JR, Pan C, Li W, Lan P, Buckhout TJ, Schmidt W (2012) The transcriptional response of Arabidopsis leaves to Fe deficiency. Front Plant Sci 4:276

    Google Scholar 

  • Chadick JZ, Asturias FJ (2005) Structure of eukaryotic mediator complexes. Trends Biochem Sci 30(5):264–271

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Chien WF, Lin NC, Yeh KC (2014) Alternative functions of Arabidopsis yellow stripe-like3: from metal translocation to pathogen defense. PLoS ONE 9:e98008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16:3400–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman RG, Sharp KA (2010) Protein pockets: inventory, shape and comparison. J Chem Inf Model 50:589–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connorton JM, Balk J, Celma JR (2017) Iron homeostasis in plants—a brief overview. Metallomics 9:813

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:W116–W118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elhiti M, Stasolla C (2009) Structure and function of homodomain-leucine zipper (HD-Zip) proteins. Plant Signal Behav 4:86–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Y, Xu P, Li B, Li P, Wen X, An F, Gong Y, Xin Y, Zhu Z, Wang Y, Guo H (2017) Ethylene promotes root hair growth through coordinated EIN3/EIL1 and RHD6/RSL1 activity in Arabidopsis. Proc Natl Acad Sci USA 114:13834–13839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filleur S (2007) Nutritional control of plant development: molecular analysis of the NO3-response pathway in Arabidopsis roots. Unpublished study, GEO Accession number: GSE6155 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6155

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A et al (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285

    Article  CAS  PubMed  Google Scholar 

  • Garcia MJ, Lucena C, Romera FJ, Alcantra E, Perez-Vicente R (2010) Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. J Exp Bot 61:3885–3899

    Article  CAS  PubMed  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A, Walker JM (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607

    Chapter  Google Scholar 

  • Geourjon C, Deléage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 11:681–684

    Article  CAS  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:1178–1186

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence align- ment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Harris JM (2015) Abscisic acid: hidden architect of root system structure. Plants (Basel) 4:548–572

    Article  CAS  Google Scholar 

  • Harris JC, Hrmova M, Lopato S, Langridge P (2011) Modulation of plant growth by HD-Zip class I and II transcription factors in response to environmental stimuli. New Phytol 190:823–837

    Article  CAS  PubMed  Google Scholar 

  • He H, Yan J, Yu X, Liang Y, Fang L, Scheller HV, Zhang A (2017) The NADPH-oxidase AtRbohI plays a positive role in drought-stress response in Arabidopsis thaliana. Biochem Biophys Res Commun 491:834–839

    Article  CAS  PubMed  Google Scholar 

  • Hemsley PA, Hurst CH, Kaliyadasa E, Lamb R, Knight MR, De Cothi EA, Steele JF, Knight H (2014) The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes. Plant Cell 26:465–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hindt MN, Akmakjian GZ, Pivarski KL, Punshon T, Baxter I, Salt E, Guerinot ML, Punshon T (2017) BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana. Metallomics 9:876–890

    Article  CAS  PubMed  Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform 2008:420747

    Article  Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  PubMed  Google Scholar 

  • Ivanov R, Brumbarova T, Bauer P (2011) Fitting into the harsh reality: regulation of iron deficiency responses in dicotyledonous plants. Mol Plant 5:27–42

    Article  CAS  PubMed  Google Scholar 

  • Jakoby M, Wang HY, Reidt W, Weisshaar B, Bauer P (2004) FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. FEBS Lett 577:528–534

    Article  CAS  PubMed  Google Scholar 

  • Jones M (2007) The effect of mutations in AtrbohC on the pattern of gene expression in primary root tissue. Unpublished study, GEO Accession number: GSE6165 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6165

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Kehr J (2012) Roles of miRNAs in nutrient signaling and homeostasis. In Sunkar R. (Ed.) MicroRNAs in plant development and stress responses. http://books.google.com

  • Kelley LA, Sternberg MJE (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  PubMed  Google Scholar 

  • Khan ZH, Kumar B, Dhatterwal P, Mehrotra S, Mehrotra R (2017) Transcriptional regulatory network of cis-regulatory elements (Cres) and transcription factors (TFs) in plants during abiotic stress. Int J Plant Biol Res 5:1064

    Google Scholar 

  • Knight SAB, Labb S, Kwon LF, Kosman DJ, Thiele DJ (1996) A widespread transposable element masks expression of a yeast copper transport gene. Genes Dev 10:1917–1929

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Satone H, Tan E, Kurokochi H, Asakawa S, Liu S, Takano T (2014) Transcriptional responses of a bicarbonate-tolerant monocot, Puccinellia tenuiflora, and a related bicarbonate-sensitive species, Poa annua, to NaHCO3 stress. Int J Mol Sci 16:496–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurt F, Filiz E (2018) Genome-wide and comparative analysis of bHLH38, bHLH39, bHLH100 and bHLH101 genes in Arabidopsis, tomato, rice, soybean and maize: insights into iron (Fe) homeostasis. Biometals 3:489–504

    Article  CAS  Google Scholar 

  • Li W, Lan P (2015) Genome-wide analysis of overlapping genes regulated by iron deficiency and phosphate starvation reveals new interactions in Arabidopsis roots. BMC Res Notes 8:555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Yang A, Zhang WH (2016) Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (Oryza sativa L.). J Exp Bot 67:6431–6444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling HQ, Bauer P, Bereczky Z, Keller B, Ganal M (2002) The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc Natl Acad Sci 99:13938–13943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling HQ, Wu H, Du J, Wang N (2009) AtbHLH38 and AtbHLH39 interact with FIT, functioning in control of iron uptake in Arabidopsis. In: The proceedings of the international plant nutrition colloquium XVI

  • Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN (2010) The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 22:2219–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Millán AF, Grusak MA, Abadía A, Abadía J (2013) Iron deficiency in plants: an insight from proteomic approaches. Front Plant Sci 4:254

    Article  PubMed  PubMed Central  Google Scholar 

  • Mai HJ, Lindermayr C, Von Toerne C, Fink Straube C, Bauer P (2015) Iron and FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR-dependent regulation of proteins and genes in Arabidopsis thaliana roots. Proteomics 15:3030–3047

    Article  CAS  PubMed  Google Scholar 

  • Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN et al (2015) Correction: transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet 11:e1005566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makita Y, Shimada S, Kawashima M, Kondou-Kuriyama T, Toyoda T, Matsui M (2015) MOROKOSHI: transcriptome database in Sorghum bicolor. Plant Cell Physiol 56:e6

    Article  CAS  PubMed  Google Scholar 

  • Mangrauthia SK, Sailaja B, Agarwal S, Prasanth VV, Voleti SR, Sarla N, Subrahmanyam D (2017) Genome-wide changes in microRNA expression during short and prolonged heat stress and recovery in contrasting rice cultivars. J Exp Bot 68:2399–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meiser J, Lingam S, Bauer P (2011) Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor fit is affected by iron and nitric oxide. Plant Physiol 157:2154–2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng EC, Pettersen EF, Couch GS, Huang CC, Ferrin TE (2006) Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinform 7:339

    Article  CAS  Google Scholar 

  • Müller M (2007) Arabidopsis root hair development in adaptation to iron and phosphate supply. Dissertation, Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin

  • Nakazato T, Goodwin SB, Sutter TR (2013) Comparative transcriptome analysis of responses to water deficit in Solanum lycopersicum and S. pimpinellifolium roots. Unpublished study, GEO Accession number: GSE39894. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39894

  • Naranjo-Arcos MA, Bauer P (2016) Iron nutrition, oxidative stress, and pathogen defense. In: Erkekoglu P, Kocer-Gumusel B (eds) Nutritional deficiency. InTech, Rijeka, pp 63–98

    Google Scholar 

  • Niu X, Guan Y, Chen S, Li H (2017) Genome-wide analysis of basic helix-loophelix (bHLH) transcription factors in Brachypodium distachyon. BMC Genom 18:619

    Article  CAS  Google Scholar 

  • Palmer CM, Hindt MN, Schmidt H, Clemens S, Guerinot ML (2013) MYB10 and MYB72 are required for growth under iron-limiting conditions. PLoS Genet 9:e1003953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan IC, Tsai HH, Cheng YT, Wen TN, Buckhout TJ, Schmidt W (2015) Post-transcriptional coordination of the Arabidopsis iron deficiency response is partially dependent on the E3 ligases ring domain ligase1 (rglg1) and ring domain ligase2 (RGLG2). Mol Cell Proteomics 14:2733–2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Li Z, Wen X, Li W, Shi H, Yang L, Zhu H, Guo H (2014) Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genet 10(10):e1004664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Pires N, Dolan L (2010) Origin and diversification of basic helix-loop-helix proteins in plants. Mol Biol 27:862–874

    Article  Google Scholar 

  • Quan R, Wang J, Yang D, Zhang H, Zhang Z, Huang R (2017) EIN3 and SOS2 synergistically modulate plant salt tolerance. Sci Rep 7:44637

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J (2013) Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol 161:1783–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravet K, Touraine B, Boucherez J, Briat JF, Gaymard F, Cellier F (2009) Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J 57:400–412

    Article  CAS  PubMed  Google Scholar 

  • Redfern O, Dessailly B, Orengo C (2008) Exploring the structure and function paradigm. Curr Opin Struct Biol 18:394–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruzicka DR, Barrios-Masias FH, Hausmann NT, Jackson LE, Schachtman DP (2010) Tomato root transcriptome response to a nitrogen-enriched soil patch. BMC Plant Biol 10:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos RSD, de Araujo Junior TA, Pegoraro C, de Oliveira AC (2017) Dealing with iron metabolism in rice: from breeding for stress tolerance to biofortification. Genet Mol Biol 40:312–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schönrock N, Exner V, Probst A, Gruissem W, Hennig L (2006) Functional genomic analysis of CAF-1 mutants in Arabidopsis thaliana. J Biol Chem 281:9560–9568

    Article  CAS  PubMed  Google Scholar 

  • Séguéla M, Briat JF, Vert G, Curie C (2008) Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway. Plant J 55:289–300

    Article  CAS  PubMed  Google Scholar 

  • Sivitz AB, Hermand V, Curie C, Vert G (2012) Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-Independent Pathway. PLoS ONE 7:e44843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai H, Lu X, Opitz N, Marcon C, Paschold A, Lithio A, Nettleton D, Hochholdinger F (2016) Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.). J Exp Bot 67:1123–1135

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Gaur S, Singh S, Yadav V, Liu S, Singh VP, Sharma S, Srivastava P, Prasad SM, Dubey NK, Chauhan DK, Sahi S (2018) Acquisition and homeostasis of iron in higher plants and their probable role in abiotic stress tolerance. Front Environ Sci 5:86

    Article  Google Scholar 

  • Uddin MS, Billah M, Hossain N, Bagum SA, Islam MT (2018) Omics based strategies for improving salt tolerance in maize (Zea mays L.). In Zargar SM and Zargar MY (Eds.) Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective. http://books.google.com

  • Vatansever R, Filiz E, Ozyigit II (2015) Genome-wide analysis of iron-regulated transporter 1 (IRT1) genes in plants. Hortic Environ Biotechnol 56:516–523

    Article  CAS  Google Scholar 

  • Walker E, Connolly EL (2008) Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Curr Opin Plant Biol 11:530–535

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Klatte M, Jakoby M, Bäumlein H, Weisshaar B, Bauer P (2007) Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana. Planta 226:897–908

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Peng J, Ma J, Xu J (2016) Protein structure prediction using deep convolutional neural fields. Sci Rep 6:18962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Zhang C, Dou Y, Yu B, Liu Y, Moss TM, Lu G, Wachholtz M, Bradshaw JD, Twigg P, Scully E, Palmer N (2017a) Insect and plant-derived miRNAs in greenbug (Schizaphis graminum) and yellow sugarcane aphid (Sipha flava) revealed by deep sequencing. Gene 599:68–77

    Article  CAS  PubMed  Google Scholar 

  • Wang XF, Su J, Yang N, Zhang H, Cao XY, Kang JF (2017b) Functional characterization of selected universal stress protein from Salvia miltiorrhiza (SmUSP) in Escherichia coli. Genes 8:224

    Article  CAS  PubMed Central  Google Scholar 

  • Wong DCJ, Gutierrez RL, Gambetta GA, Castellarin SD (2017) Genome-wide analysis of cis-regulatory element structure and discovery of motif-driven gene co-expression networks in grapevine. DNA Res 24:311–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue LJ, Zhang JJ, Xue HW (2009) Characterization and expression profiles of miRNAs in rice seeds. Nucleic Acids Res 37(3):916–930

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Ou B, Zhang J, Si W, Gu H, Qin G, Qu LJ (2014) The Arabidopsis Mediator subunit MED16 regulates iron homeostasis by associating with EIN3/EIL1 through subunit MED25. Plant J 77:838–851

    Article  CAS  PubMed  Google Scholar 

  • Yousefi M, Nematzadeh GA, Askari H, Nasiri N (2012) Bioinformatics analysis of promoters cis elements and study on genes co-expression of oxidative defense pathway in Oryza sativa L. Plant Int J Agric Crop Sci 4:1240–1245

    Google Scholar 

  • Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wei L, Zou X, Tao Y, Liu Z, Zheng Y (2008) submergence-responsive microRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Ann Bot 102:509–519

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Li Y, Lin B, Schroeder M, Huang B (2011) Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics 27:2083–2088

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu B, Li M, Feng D, Jin H, Wang P, Liu J, Xiong F, Wang J, Wang HB (2015) The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis. Plant Cell 27:787–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Ren YR, Wang QJ, Yao XY, You CX, Hao YJ (2016) Overexpression of MdbHLH104 gene enhances the tolerance to iron deficiency in apple. Plant Biotechnol J 14:1633–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ertugrul Filiz or Fırat Kurt.

Ethics declarations

Conflict of interest

Ertugrul Filiz and Fırat Kurt declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2334 kb)

Supplementary material 2 (DOCX 220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filiz, E., Kurt, F. FIT (Fer-like iron deficiency-induced transcription factor) in plant iron homeostasis: genome-wide identification and bioinformatics analyses. J. Plant Biochem. Biotechnol. 28, 143–157 (2019). https://doi.org/10.1007/s13562-019-00497-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-019-00497-0

Keywords

Navigation