Advertisement

Protein changes in the shoot-tips of vanilla (Vanilla planifolia) in response to osmoprotective treatments

  • María Teresa González-Arnao
  • Armando Guerrero-Rangel
  • Octavio Martínez
  • Silvia Valdés-Rodríguez
Original Article
  • 74 Downloads

Abstract

Cryogenic storage of vanilla shoot-tips represents the safest biotechnological strategy for the long-term conservation of the vanilla germplasm, but successful cryopreservation depends on its tolerance to both dehydration stress imposed by cryoprotective treatments and thermal stress produced by immersion in liquid nitrogen. In this work, we evaluated the impact of various osmoprotective treatments on protein expression patterns in vanilla (Vanilla planifolia) shoot-tips subjected to successive dehydration steps prior to cryopreservation. Two-dimensional electrophoretic protein profiles of shoot-tips dissected from in vitro grown plants and preconditioned on semisolid media with 0.3 M sucrose for one day, and shoot-tips preconditioned, loaded with a solution of 0.4 M sucrose and 2 M glycerol, and subsequently exposed to plant vitrification solution 3 (50% (w/v) sucrose and 50% (w/v) glycerol), were compared with non-treated dissected shoot-tips. We observed an increase in the expression level of six protein spots (fold change exceeding 1.5) and a decrease (fold change not exceeding 0.6) of ten protein spots after preconditionig treatment, whereas the profiles after preconditioning, loading and exposure to vitrification solution showed an increase in the expression level of 21 protein spots and a decrease in the expression level of 13. Most proteins identified were down-regulated and belonged to groups of biosynthesis, folding, and protein degradation. Many others were related to energetic metabolism, defense, and cell structure. These preliminary results contribute to knowledge of the proteome of this species and partially clarify its sensitivity to osmotic dehydration treatments.

Keywords

Dehydration stress Osmoprotection Protein profiles Proteomics Two-dimensional electrophoresis Vanilla 

Abbreviations

2-DE

Bidimensional electrophoresis

DTT

Dithiothreitol

EDTA

Ethylenediaminetetraacetic acid

IPG

Immobilized pH gradients

IEF

Isoelectric focusing

LC

Liquid chromatography

LTQ

Linear ion trap

MS/MS

Mass spectrometry in tandem

PVS3

Plant vitrification solution 3

Q-TOF

Quadrupole time-of-flight

Notes

Acknowledgements

The study was funded by the Mexican Secretariat of Public Education-National Council of Science and Technology, basic science (Grant 166332/CB2011). The authors thank Alicia Chagolla (Mass Spectrometry Service, Cinvestav).

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest.

Supplementary material

13562_2018_442_MOESM1_ESM.docx (681 kb)
Supplementary material 1 (DOCX 680 kb)
13562_2018_442_MOESM2_ESM.xls (94 kb)
Supplementary material 2 (XLS 93 kb)
13562_2018_442_MOESM3_ESM.doc (80 kb)
Supplementary material 3 (DOC 80 kb)

References

  1. An YQ, Lin RM, Wang FT, Feng J, Xu YF, Xu SC (2011) Molecular cloning of a new wheat calreticulin gene TaCRT1 and expression analysis of plant defense responses and abiotic stress resistance. Genet Mol Res 10:3576–3585CrossRefPubMedGoogle Scholar
  2. Aranjuelo I, Molero G, Erice G, Avice JC, Nogués S (2011) Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). J Exp Bot 62:111–123.  https://doi.org/10.1093/jxb/erq249 CrossRefPubMedGoogle Scholar
  3. Benning UF, Tamot B, Guelette BS, Hoffmann-Benning S (2012) New aspects of phloem-mediated long-distance lipid signaling in plants. Front Plant Sci 3:1–8CrossRefGoogle Scholar
  4. Carpentier SC, Witters E, Laukens K, Decker P, Swennen R, Panis B (2005) Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5:2497–2507CrossRefPubMedGoogle Scholar
  5. Carpentier SC, Witters E, Laukens K, Van Onckelen H, Swennen R, Panis B (2007) Banana (Musa spp.) as a model to study the meristem proteome: acclimation to osmotic stress. Proteomics 7:92–105CrossRefPubMedGoogle Scholar
  6. Carpentier SC, Vertommen A, Swennen R, Witters E, Fortes C, Souza MT Jr, Panis B (2010) Sugar-mediated acclimation: the importance of sucrose metabolism in meristems. J Proteome Res 9:5038–5046CrossRefPubMedGoogle Scholar
  7. Divakaran M, Babu KN, Peter KV (2006) Conservation of vanilla species in vitro. Sci Hortic 110:175–180CrossRefGoogle Scholar
  8. Fulda S, Mikkat S, Stegmann H, Horn R (2011) Physiology and proteomics of drought stress acclimation in sunflower (Helianthus annuus L.). Plant Biol 13:632–642CrossRefPubMedGoogle Scholar
  9. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930CrossRefPubMedGoogle Scholar
  10. Görg A, Obermaier C, Boguth G, Harder A (1999) 2-D electrophoresis with immobilized pH gradients using the IPGphor. Life Science News 1:4–6Google Scholar
  11. González-Arnao MT, Panta A, Roca WM, Escobar RH, Engelmann F (2008) Development and large scale application of cryopreservation techniques for the shoot and somatic embryo cultures of tropical crops. Plant Cell Tiss Org 92:1–13CrossRefGoogle Scholar
  12. González-Arnao MT, Lázaro-Vallejo CE, Engelmann F, Gamez PR, Martínez OY, Pastelín SMC, Díaz RC (2009) Multiplication and cryopreservation of vanilla (Vanilla planifolia ‘Andrews’). In Vitro Cell Dev Biol Plant 45:574–582CrossRefGoogle Scholar
  13. González-Arnao MT, Durán-Sánchez B, Jiménez Francisco B, Lázaro-Vallejo CE, Valdés-Rodríguez SE, Guerrero-Rangel A (2011) Cryopreservation and proteomic analysis of vanilla (V. planifolia A.) apices treated with osmoprotectants. Acta Hortic 908:67–72CrossRefGoogle Scholar
  14. Granot D, Kelly G, Stein O, David-Schwartz R (2014) Substantial roles of hexokinase and fructokinase in the effects of sugars on plant physiology and development. J Exp Bot 65(3):809–819.  https://doi.org/10.1093/jxb/ert400 CrossRefPubMedGoogle Scholar
  15. Grebosz J, Badowiec A, Weidner S (2014) Changes in the root proteome of Triticosecale grains during germinating under osmotic stress. Acta Physiol Plant 36:825–835CrossRefGoogle Scholar
  16. Grisoni M, Moles M, Besse P, Bory S, Duval MF, Kahane R (2007) Towards an international plant collection to maintain and characterize the endangered genetic resources of vanilla. Acta Hortic 760:83–91CrossRefGoogle Scholar
  17. Gruber AV, Nisemblat S, Azem A, Weiss C (2013) The complexity of chloroplast chaperonins. Trends Plant Sci 1:688–694CrossRefGoogle Scholar
  18. Guelette BS, Benning UF, Hoffmann-Benning S (2012) Identification of lipids and lipid-binding proteins in phloem exudates from Arabidopsis thaliana. J Exp Bot 63:3603–3616CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hernandez-Ramirez F, Gonzalez-Arnao MT, Cruz-Cruz C, Pastelin-Solano M, Engelmann F (2014) Comparison of different preconditioning and loading treatments with vanilla (Vanilla planifolia Jack.) apices cryopreserved using the droplet-vitrification procedure. Acta Hortic 1039:173–180CrossRefGoogle Scholar
  20. Huttner S, Strasser R (2012) Endoplasmic reticulum-associated degradation of glycoproteins in plants. Front Plant Sci 3:67.  https://doi.org/10.3389/fpls.2012.00067 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Islam M, Begum MC, Kabir AH, Alam MF (2015) Molecular and biochemical mechanisms associated with differential responses to drought tolerance in wheat (Triticum aestivum L.). J Plant Interact 10:195–201.  https://doi.org/10.1080/17429145.2015.1064174 CrossRefGoogle Scholar
  22. Kausar R, Arshad M, Shahzad A, Komatsu S (2013) Proteomics analysis of sensitive and tolerant barley genotypes under drought stress. Amino Acids 44:345–359.  https://doi.org/10.1007/s00726-012-1338-3 CrossRefPubMedGoogle Scholar
  23. Kim JH, Nguyen NH, Nguyen NT, Hong SW, Lee H (2013) Loss of all three calreticulins, CRT1, CRT2 and CRT3, causes enhanced sensitivity to water stress in Arabidopsis. Plant Cell Rep 32:1843–1853CrossRefPubMedGoogle Scholar
  24. Kosová K, Vítámvás P, Prásil IT, Renaut J (2011) Plant proteome changes under abiotic stress contribution of proteomics studies to understanding plant stress response. J Proteomics 74:1301–1322CrossRefPubMedGoogle Scholar
  25. Mann M, Jensen O (2003) Proteomic Analysis of post-translational modifications: nature proteomic analysis of post-translational modifications. Nat Biotechnol 21:255–261CrossRefPubMedGoogle Scholar
  26. Mohammadi PP, Moieni A, Hiraga S, Komatsu S (2012) Organ-specific proteomic analysis of drought-stressed soybean seedlings. J Proteomics 75:1906–1923CrossRefPubMedGoogle Scholar
  27. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497CrossRefGoogle Scholar
  28. Ndimba BK, Chivasa S, Simon WJ, Slabas AR (2005) Identification of Arabidopsis salt and osmotic stress-responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 5:4185–4196CrossRefPubMedGoogle Scholar
  29. Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogenic suspension cells and subsequent plant regeneration by the vitrification method. Plant Sci 88:67–73CrossRefGoogle Scholar
  30. Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9:2584–2599.  https://doi.org/10.1021/pr100034f CrossRefPubMedGoogle Scholar
  31. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense. Mechanism in plants under stressful conditions. J Bot, Article ID 217037, 26 pagesGoogle Scholar
  32. Shevchenko A, Tomas H, Havlis J, Olsen J, Mann M (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860CrossRefGoogle Scholar
  33. Sinha AK, Sharma UK, Sinha N (2008) A comprehensive review on vanilla flavour: extraction, isolation and quantification of vanillin and others constituents. Int J Food Sci Nutr 59:299–326CrossRefPubMedGoogle Scholar
  34. Sniegowska-Swierk K, Dubas E, Rapacz M (2015) Drought-induced changes in the actin cytoskeleton of barley (Hordeum vulgare L.) leaves. Acta Physiol Plant 37:73.  https://doi.org/10.1007/s11738-015-1820-0 CrossRefGoogle Scholar
  35. Sobhanian H, Razavizadeh R, Nanjo Y, Ehsanpour AA, Rastgar F, Jazii F, Motamed N, Komatsu S (2010) Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci 8:1–15CrossRefGoogle Scholar
  36. Soto-Arenas MA (2003) Genera Orchidacearum. Volume 3: Orchidoideae (Part 2): Vanilloideae. In Alec M Pridgeon, Phillip J Cribb, Mark W Chase, Finn N Rasmussen (Eds). Oxford University Press, Oxford. pp 321–334Google Scholar
  37. Stone SL (2014) The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Front Plant Sci 5:135.  https://doi.org/10.3389/fpls.2014.00135 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Vanhove AC, Vermaelen W, Swennen R, Carpentier SC (2015) A look behind the screens: characterization of the HSP70 family during osmotic stress in a non-model crop. J Proteomics 119:10–20CrossRefPubMedGoogle Scholar
  39. Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252CrossRefPubMedGoogle Scholar
  40. Wang A, Yu X, Mao Y, Liu Y, Liu G, Liu Y, Niu X (2015a) Overexpression of a small heat-shock protein gene enhances tolerance to abiotic stresses in rice. Plant Breed 134:384–393.  https://doi.org/10.1111/pbr.12289 CrossRefGoogle Scholar
  41. Wang N, Zhao J, He X, Sun H, Zhang G, Wu F (2015b) Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype. BMC Genomics 16:432.  https://doi.org/10.1186/s12864-015-1657-3 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Wang X, Cai X, Xu C, Wang Q, Dai S (2016) Drought-responsive mechanisms in plant leaves revealed by proteomic. Int J Mol Sci 17:1706.  https://doi.org/10.3390/ijms17101706 CrossRefPubMedCentralGoogle Scholar
  43. Zang X, Komatsu S (2007) A proteomic approach for identified osmotic-stress-related proteins in rice. Phytochemistry 6:426–437CrossRefGoogle Scholar
  44. Zhang D, Ren L, Chen G-Q, Zhang J, Reed BM, Shen X-H (2015) ROS-induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox. Plant Cell Rep 34:1499–1513CrossRefPubMedGoogle Scholar
  45. Zhang H, Ni Z, Chen Q, Guo Z, Gao W, Su X, Qu Y (2016) Proteomic responses of drought-tolerant and drought-sensitive cotton varieties to drought stress. Mol Genet Genomics 291:1293–1303.  https://doi.org/10.1007/s00438-016-1188-x CrossRefPubMedGoogle Scholar
  46. Zhu J, Hao P, Chen G, Han C, Li X, Zeller FJ et al. (2014) Molecular cloning, phylogenetic analysis, and expression profiling of endoplasmic reticulum molecular chaperone BiP genes from bread wheat (Triticum aestivum L.). BMC Plant Biol 14:260.  https://doi.org/10.1186/s12870-014-0260-0 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zorb C, Schmitt S, Muhling KH (2010) Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics 10:4441–4449.  https://doi.org/10.1002/pmic.201000231 CrossRefPubMedGoogle Scholar

Copyright information

© Society for Plant Biochemistry and Biotechnology 2018

Authors and Affiliations

  • María Teresa González-Arnao
    • 1
  • Armando Guerrero-Rangel
    • 2
  • Octavio Martínez
    • 3
  • Silvia Valdés-Rodríguez
    • 2
  1. 1.Facultad de Ciencias QuímicasUniversidad VeracruzanaOrizabaMexico
  2. 2.Cinvestav-Unidad IrapuatoIrapuatoMexico
  3. 3.Laboratorio Nacional de Genómica para la Biodiversidad (Langebio)CinvestavIrapuatoMexico

Personalised recommendations