Skip to main content
Log in

Molecular and biochemical characterization of mungbean yellow mosaic India virus resistance in leguminous host Vigna mungo

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mungbean yellow mosaic India virus (MYMIV)—the causal agent of the yellow mosaic disease is responsible for severe damage of crops that are of great economic importance. In the current study, we explored the process of MYMIV infection and its natural resistance by analysing the expression of early and late viral genes at different time points in the leaves of resistant and susceptible Vigna mungo plants. Accordingly, we have periodically evaluated several biochemical parameters commonly associated with oxidative status of resistant and susceptible V. mungo plants during MYMIV infection. Our study revealed that accumulation levels of the early as well as late expressed genes of MYMIV were low and high in the resistant and susceptible plants, respectively; whereas membrane stability index (MSI) exhibited an opposite response. Moreover, a decrease in the malondialdehyde levels along with an increase in the activities/levels of different antioxidant enzymes, total phenol and H2O2 was noted during the early stages of infection in the resistant plants. Such observations argue in favour of strong defensive capability of the resistant plants in restricting the accumulation of viral RNA and generation of harmful free radicals within the studied tissue. Collectively, it appears that obstruction of viral invasion in plant cell wall, restriction in viral DNA replication, and early onset of antioxidant defense responses altogether might be responsible for MYMIV natural resistance. Such information is helpful in understanding the pathogenesis of MYMIV infection and its resistance in V. mungo and other economically important crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MYMIV:

Mungbean yellow mosaic India virus

HR:

Hypersensitive reaction

ROS:

Reactive oxygen species

POD:

Peroxidase

SOD:

Superoxide dismutase

CAT:

Catalase

YMD:

Yellow mosaic disease

ORFs:

Open reading frames

REP:

Replication initiator protein

TrAP:

Transcription activator protein

REn:

Replication enhancer

qRT-PCR:

Quantitative real-time polymerase chain reaction

ACT:

Actin

MSI:

Membrane stability index

TBA:

Thiobarbituric acid

MDA:

Malondialdehyde

GAE:

Gallic acid

NBT:

Nitroblue tetrazolium

BSA:

Bovine serum albumin

ANOVA:

Analysis of variance

DMRT:

Duncan’s multiple range test

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA, Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773–784

    Article  PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Arguello-Astorga GR, Guevara-González RG, Hererera-Estrella LR, Rivera- Bustamante RF (1994) Geminivirus replication origins have a group-specific organization of iterative elements: a model for replication. Virology 203:90–100

    Article  PubMed  CAS  Google Scholar 

  • Baker CJ, Orlandi EW (1995) Active oxygen in plant/pathogen interactions. Annu Rev Phytopathol 33:299–321

    Article  PubMed  CAS  Google Scholar 

  • Barceló AR (1997) Lignification in plant cell walls. Int Rev Cytol 176:87–132

    Article  Google Scholar 

  • Basak J, Kundagramy S, Ghose TK, Pal A (2004) Development of yellow mosaic virus (YMV) resistance linked DNA-marker in Vigna mungo from population segregating for YMV reaction. Mol Breed 14:375–383

    Article  CAS  Google Scholar 

  • Bian XY, Thomas MR, Rasheed MS, Saeed M, Hanson P, De Barro PJ, Rezaian MA (2007) A recessive allele (tgr-1) conditioning tomato resistance to geminivirus infection is associated with impaired viral movement. Phytopathology 97:930–937

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brunetti A, Tavazza R, Noris E, Lucioli A, Accotto GP, Tavazza M (2001) Transgenically expressed T-Rep of Tomato yellow leaf curl Sardinia virus acts as a trans-dominant-negative mutant, inhibiting viral transcription and replication. J Virol 75:10573–10581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dallagnol LJ, Rodrigues FA, DaMatta FM, Mielli MVB, Pereira SC (2011) Deficiency in silicon uptake affects cytological, physiological, and biochemical events in the rice-Bipolaris oryzae interaction. Phytopathology 101:92–104

    Article  PubMed  Google Scholar 

  • Day AG, Bejarano ER, Buck KW, Burrell M, Lichtenstein CP (1991) Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus Tomato golden mosaic virus. Proc Natl Acad Sci USA 88:6721–6725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Desbiez C, David C, Mettouchi A, Laufs J, Gronenborn B (1995) Rep protein of tomato yellow leaf curl geminivirus has an ATPase activity required for viral DNA replication. Proc Natl Acad Sci USA 92:5640–5644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhindsa RS, Dhindsa PP, Thorpe TA (1980) Leaf senescence correlated with increased levels of membrane permeability and lipid-peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101

    Article  Google Scholar 

  • Eagle PA, Hanley-Bowdoin L (1997) Cis element that contribute to geminivirus transcriptional regulation and the efficiency of DNA replication. J Virol 71:6947–6955

    PubMed  PubMed Central  CAS  Google Scholar 

  • El-Komy MH (2014) Comparative analysis of defense responses in chocolate spot-resistant and-susceptible Faba Bean (Vicia faba) cultivars following infection by the Necrotrophic Fungus Botrytis fabae. Plant Pathol J 30:355–366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fossdal CG, Sharma P, Lonneborg A (2001) Isolation of the first putative peroxidase cDNA from a conifer and local and systemic accumulation of related proteins upon pathogen infection. Plant Mol Biol 47:423–435

    Article  PubMed  CAS  Google Scholar 

  • Frew J, Jones P, Scholes G (1983) Spectrophotometric determination of hydrogen peroxide and organic hydroperoxides at low concentrations in aqueous solution. Anal Chim Acta 155:130–150

    Article  Google Scholar 

  • Gafni Y, Epel BL (2002) The role of host and viral proteins in intra and inter-cellular trafficking of geminiviruses. Physiol Mol Plant Pathol 60:231–241

    Article  CAS  Google Scholar 

  • Gara LD, Pinto MC, Tommasi F (2003) The antioxidant systems vis-à-vis reactive oxygen species during plant-pathogen interaction. Plant Physiol Biochem 41:863–870

    Article  CAS  Google Scholar 

  • Garcia-Neria MA, Rivera-Bustamante RF (2011) Characterization of Geminivirus Resistance in an Accession of Capsicum chinense Jacq. Mol Plant Microbe Interact 24:172–182

    Article  PubMed  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases occurrence in higher plants. Plant Physiol 59:309–314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (2000) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Biochem Mol Biol 35:105–140

    PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chlorplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Ivanov KI, Makinen K (2012) Coat proteins, host factors and plant viral replication. Curr Opin Virol 2:1–7

    Article  CAS  Google Scholar 

  • Kundu A, Patel A, Pal A (2013a) Defining reference genes for qPCR normalization to study biotic and abiotic stress responses in Vigna mungo. Plant Cell Rep 32:1647–1658

    Article  PubMed  CAS  Google Scholar 

  • Kundu S, Chakraborty D, Kundu A, Pal A (2013b) Proteomics approach combined with biochemical attributes to elucidate compatible and incompatible plant–virus interactions between Vigna mungo and Mungbean Yellow Mosaic India Virus. Proteome Sci 11:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kundu A, Patel A, Paul S, Pal A (2015) Transcript dynamics at early stages of molecular interactions of MYMIV with resistant and susceptible genotypes of the leguminous Host, Vigna mungo. PLoS ONE 10:e0124687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lazarowitz SG (1987) The molecular characterization of geminiviruses. Plant Mol Biol Rep 4:177–192

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Ochoa L, Ramirez-Prado J, Hanley-Bowdoin L (2006) Peptide aptamers that bind to a geminivirus replication protein interfere with viral replication in plant cells. J Virol 80:5841–5853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matern U, Kneusal RE (1988) Phenolic compounds in plant disease resistance. Phytopathogy 16:153–170

    CAS  Google Scholar 

  • Mehdy MC (1994) Involvement of active oxygen species in plant defense against pathogens. Plant Physiol 105:467–472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohamed H, EL-Hady AA, Mansour M, El-Samawaty AE-R, Mohamed H (2012) Association of oxidative stress components with resistance to flax powdery mildew. Trop Plant Pathol 37:386–392

    Article  Google Scholar 

  • Nariani TK (1960) Yellow mosaic of Mung (Phaseolus aureus L.). Indian Phytopathol 13:24–29

    Google Scholar 

  • Oliveira JTA, Andrade NC, Martins-Miranda AS, Soares AA, Gondim DMF, Araújo-Filho JH, Freire-Filho FR, Vasconcelos IM (2012) Differential expression of antioxidant enzymes and PR-proteins in compatible and incompatible interactions of cowpea (Vigna unguiculata) and the root-knot nematode Meloidogyne incognita. Plant Physiol Biochem 51:145–152

    Article  PubMed  CAS  Google Scholar 

  • Pant V, Gupta D, Choudhury NR, Malathi VG, Varma A, Mukherjee SK (2001) Molecular characterization of the Rep protein of the blackgram isolate of Indian mungbean yellow mosaic virus. J Gen Virol 82:2559–2567

    Article  PubMed  CAS  Google Scholar 

  • Pasumarthy KK, Choudhury NR, Mukherjee SK (2010) Tomato leaf curl Kerala virus (ToLCKeV) AC3 protein forms a higher order oligomer and enhances ATPase activity of replication initiator protein (Rep/AC1). Virol J 7:128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Polle A, Otter T, Seifert F (1994) Apoplastic peroxidises and lignification in needles of Norway Spruce Picea abies L. Plant Physiol 106:53–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Preiss W, Jeske H (2003) Multitasking in replication is common among geminiviruses. J Virol 77:2972–2980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raghavan V, Malik PS, Choudhury NR, Mukherjee SK (2004) The DNA-A component of a plant geminivirus (Indian mung bean yellow mosaic virus) replicates in budding yeast cells. J Virol 78:2405–2413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rouhibakhsh A, Haq QMI, Malathi VG (2011) Mutagenesis in ORF AV2 affects viral replication in Mungbean yellow mosaic India virus. J Biosci 36:329–340

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Medrano R, Guevara-González RG, Arguello-Astorga GR, Monsalve-Fonnegra Z, Herrera-estrella LR, Rivera-Bustamante RF (1999) Identification of a sequence element involved in AC2-mediated transactivation of the Pepper huasteco virus coat protein gene. Virology 253:162–169

    Article  PubMed  CAS  Google Scholar 

  • Sairam RK (1994) Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian J Exp Biol 32:584–593

    Google Scholar 

  • Sanderfoot AA, Lazarowitz SG (1996) Getting it together in plant virus movement: cooperative interactions between bipartite geminivirus movement proteins. Trends Cell Biol 6:353–358

    Article  PubMed  CAS  Google Scholar 

  • Shahida SP, Qaisrani TM, Bhutta S, Riffat P, Naqvi SHM (2001) HPLC analysis of cotton phenols and their contribution in bollworm resistance. Online J Biol Sci 1:587–590

    Article  Google Scholar 

  • Shivaprasad PV, Akbergenov R, Trinks D, Rajeswaran R, Veluthambi K, Hohn T, Pooggin MM (2005) Promoters, transcripts, and regulatory proteins of Mungbean Yellow Mosaic Geminivirus. J Virol 79:8149–8163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh HP, Kaur S, Batish DR, Kohli RK (2014) Ferulic acid impairs rhizogenesis and root growth, and alters associated biochemical changes in mung bean (Vigna radiata) hypocotyls. J Plant Interact 9:267–274

    Article  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenol and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Sivaprakasan K, Vidhyasekaran P (1993) Phenylalanine ammonia lyase gene for crop disease management. In: Vidhyasekaran P (ed.) Genetic engineering, molecular biology and tissue culture for crop pest and disease management. Delhi, India, pp 113–122

  • Sunter G, Bisaro DM (1992) Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. Plant Cell 4:1321–1331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiol Plant 138:414–429

    Article  PubMed  CAS  Google Scholar 

  • Varma A, Malathi VG (2003) Emerging geminivirus problems: a serious threat to crop production. Ann Appl Biol 142:145–164

    Article  CAS  Google Scholar 

  • Wang HL, Sudarshana MR, Gilbertson RL, Lucas WJ (1999) Analysis of cell-to-cell and long-distance movement of a bean dwarf mosaic geminivirus-green fluorescent protein reporter in host and nonhost species: identification of sites of resistance. Mol Plant Microbe Interact 12:345–355

    Article  CAS  Google Scholar 

  • Yadav RK, Shukla RK, Chattopadhyay D (2009) Soybean cultivar resistant to Mungbean Yellow Mosaic India Virus infection induces viral RNA degradation earlier than the susceptible cultivar. Virus Res 144:89–95

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgement

Authors express deep gratitude to Prof. Amita Pal, Bose Institute, Kolkata for providing T9 and VM1 seeds and to Dr. Debasis Chattopadhyay, NIPGR, New-Delhi for providing plasmid constructs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolly Basak.

Ethics declarations

Conflict of interest

Authors declare no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, N., Basak, J. Molecular and biochemical characterization of mungbean yellow mosaic India virus resistance in leguminous host Vigna mungo. J. Plant Biochem. Biotechnol. 27, 318–330 (2018). https://doi.org/10.1007/s13562-018-0441-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-018-0441-2

Keywords

Navigation