Aubry S, Smith-Unna RD, Boursnell CM, Kopriva S, Hibberd JM (2014) Transcript residency on ribosomes reveals a key role for the Arabidopsis thaliana bundle sheath in sulfur and glucosinolate metabolism. Plant J 78:659–673
CAS
Article
PubMed
Google Scholar
Awazuhara M, Fujiwara T, Hayashi H, Watanabe-Takahashi A, Takahashi H, Saito K (2005) The function of SULTR2;1 sulfate transporter during seed development in Arabidopsis thaliana. Plant Physiol 125:95–105
CAS
Article
Google Scholar
Bernsel A, Viklund H, Falk J, Lindahl E, Von Heijne G, Elofsson A (2008) Prediction of membrane protein topology from first principles. Proc Natl Acad Sci 105:7177–7181
CAS
Article
PubMed
PubMed Central
Google Scholar
Bevan MW, Garvin DF, Vogel JP (2010) Brachypodium distachyon genomics for sustainable food and fuel production. Curr Opin Biotech 21:211–217
CAS
Article
PubMed
Google Scholar
Buchner P, Takahashi H, Hawkesford MJ (2004) Plant sulphate transporters: co-ordination of uptake, intracellular and long-distance transport. J Exp Bot 55:1765–1773
CAS
Article
PubMed
Google Scholar
Cao MJ, Wang Z, Wirtz M, Hell R, Oliver DJ, Xiang CB (2013) SULTR3; 1 is a chloroplast-localized sulfate transporter in Arabidopsis thaliana. Plant J 73:607–616
CAS
Article
PubMed
Google Scholar
Cao MJ, Wang Z, Zhao Q, Mao JL, Speiser A, Wirtz M et al (2014) Sulfate availability affects ABA levels and germination response to ABA and salt stress in Arabidopsis thaliana. Plant J 77:604–615
CAS
Article
PubMed
Google Scholar
Caraux G, Pinloche S (2005) Permut matrix: a graphical environment to arrange gene expression profiles in optimallinear order. Bioinformatics 21(7):1280–1281
CAS
Article
PubMed
Google Scholar
Casieri L, Gallardo K, Wipf D (2012) Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. Planta 235:1431–1447
CAS
Article
PubMed
Google Scholar
Davidian JC, Kopriva S (2010) Regulation of sulfate uptake and assimilation—the same or not the same? Mol Plant 3:314–325
CAS
Article
PubMed
Google Scholar
Draper J, Mur LAJ, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge APM (2001) Brachypodium distachyon: a new model system forfunctional genomics in grasses. Plant Physiol 127:1539–1555
CAS
Article
PubMed
PubMed Central
Google Scholar
Edgar R, Domrachev M, Lash A (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210
CAS
Article
PubMed
PubMed Central
Google Scholar
El-Kereamy A, El-Sharkawy I, Ramamoorthy R, Taheri A, Errampalli D, Kumar P, Jayasankar S (2011) Prunus domestica pathogenesis-related protein-5 activates the defense response pathway and enhances the resistance to fungal infection. PLoS ONE 6:e17973
CAS
Article
PubMed
PubMed Central
Google Scholar
Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, Mering CV, Jensen LJ (2013) STRING v9. 1: protein–protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:808–815
Article
Google Scholar
Gallardo K, Courty PE, Le Signor C, Wipf D, Vernoud V (2014) Sulfate transporters in the plant’s response to drought and salinity: regulation and possible functions. Front Plant Sci 5:580
Article
PubMed
PubMed Central
Google Scholar
Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana, Louisville, pp 571–607
Chapter
Google Scholar
Gläser K, Kanawati B, Kubo T, Schmitt-Kopplin P, Grill E (2014) Exploring the Arabidopsis sulfur metabolome. Plant J 77:31–45
Article
PubMed
Google Scholar
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:1178–1186
Article
Google Scholar
Gu Z, Cavalcanti A, Chen FC, Bouman P, Li WH (2002) Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol Biol Evo. 19:256–262
CAS
Article
Google Scholar
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
CAS
Google Scholar
Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE database: 1999. Nucleic Acids Res 27:297–300
CAS
Article
PubMed
PubMed Central
Google Scholar
Honsel A, Kojima M, Haas R, Frank W, Sakakibara H, Herschbach C, Rennenberg H (2012) Sulphur limitation and early sulphur deficiency responses in poplar: significance of gene expression, metabolites, and plant hormones. J Exp Bot 63:1873–1893
CAS
Article
PubMed
Google Scholar
Howarth J, Fourcroy P, Davidian J-C, Smith FW, Hawkesford MJ (2003) Cloning of two contrasting high-affinity sulphate transporters from tomato induced by low sulphate and infectionby the vascular pathogen Verticillium dahliae. Planta 218:58–64
CAS
Article
PubMed
Google Scholar
Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297
Article
PubMed
Google Scholar
Hyung D, Lee C, Kim JH, Yoo D, Seo YS, Jeong SC et al (2014) Cross-family translational genomics of abiotic stress-responsive genes between Arabidopsis and Medicago truncatula. PLoS ONE 9:e91721. doi:10.1371/journal.pone.0091721
Article
PubMed
PubMed Central
Google Scholar
Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16:2693–2704
CAS
Article
PubMed
PubMed Central
Google Scholar
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Prot 10:845–858
CAS
Article
Google Scholar
Kumar S, Asif MA, Chakrabarty D, Tripathi RD, Trivedi PK (2011) Differential expression and alternative splicing of rice sulphate transporter family members regulate sulphur status during plant growth, development and stress conditions. Funct Integr Genomics 11:259–273
CAS
Article
PubMed
Google Scholar
Lovell SC, Davis IW, Arendall WB, Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: φ, ψ, and Cβ deviation. Proteins 50:437–450
CAS
Article
PubMed
Google Scholar
Martin MN, Tarczynski MC, Shen B, Leustek T (2005) The role of 5′-adenylylsulfate reductase in controlling sulfate reduction in plants. Photosynth Res 86:309–323
CAS
Article
PubMed
Google Scholar
Maruyama-Nakashita A, Nakamura Y, Yamaya T, Takahashi H (2004) Regulation of high-affinity sulphate transporters in plants: towards systematic analysis of sulphur signalling and regulation. J Exp Bot 55:1843–1849
CAS
Article
PubMed
Google Scholar
Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T, Takahashi H (2005) Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J 42:305–314
CAS
Article
PubMed
Google Scholar
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammaliantranscriptomes by RNA-Seq. Nat Methods 5(7):621–628
CAS
Article
PubMed
Google Scholar
Nguyen MN, Tan KP, Madhusudhan MS (2011) CLICK: topology-independent comparison of biomolecular 3D structures. Nucleic Acids Res 39:W24–W28
CAS
Article
PubMed
PubMed Central
Google Scholar
Ozdemir BS, Hernandez P, Filiz E, Budak H (2009) Brachypodium genomics. Int J Plant Genomics. doi:10.1155/2008/536104
Google Scholar
Parey K, Demmer U, Warkentin E, Wynen A, Ermler U, Dahl C (2013) Structural, biochemical and genetic characterization of dissimilatory ATP Sulfurylase from Allochromatium vinosum. PLoS ONE 8(9):e7470
Article
Google Scholar
Pasquet JC, Chaouch S, Macadré C, Balzergue S, Huguet S, Martin-Magniette ML, Bellvert F, Deguercy X, Thareau V, Heintz D et al (2014) Differential gene expression and metabolomics analyses of Brachypodium distachyon infected by deoxynivalenol producing and non-producing strains of Fusarium graminearum. BMC Genom 15:629
Article
Google Scholar
Pfaffl MW (2001) A new mathematical model for relative quantification in realtime RT-PCR. Nucleic Acids Res 29:2002–2007
Article
Google Scholar
Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Finn RD (2012) The Pfam protein families database. Nucleic Acids Res. doi:10.1093/nar/gkr1065
PubMed Central
Google Scholar
Rae AL, Smith FW (2002) Localization of expression of a high affinity sulfate transporter in barley roots. Planta 215:565–568
CAS
Article
PubMed
Google Scholar
Rouached H, Berthomieu P, El Kassis E, Cathala N, Catherinot V, Labesse G, Davidian JC, Fourcroy P (2005) Structural and functional analysis ofthe C-terminal STAS (sulfate transporter and anti-sigma antagonist) domain of the Arabidopsis thaliana sulfate transporter SULTR1.2. J Biol Chem 280:15976–15983
CAS
Article
PubMed
Google Scholar
Rouached H, Wirtz M, Alary R, Hell R, Arpat AB, Davidian JC et al (2008) Differential regulation of the expression of two high-affinity sulfate transporters, SULTR1.1 and SULTR1.2, in Arabidopsis. Plant Physiol 147:897–911
CAS
Article
PubMed
PubMed Central
Google Scholar
Schwartz CJ, Doyle MR, Manzaneda AJ, Rey PJ, Mitchell-Olds T, Amasino RM (2010) Natural variation of flowering time and vernalization responsiveness in Brachypodium distachyon. Bioenerg Res 3:38–46
Article
Google Scholar
Shibagaki N, Grossman AR (2006) The role of the STAS domain inthe function and biogenesis of a sulfate transporter as probed byrandom mutagenesis. J Biol Chem 281:22964–22973
CAS
Article
PubMed
Google Scholar
Shibagaki N, Rose A, McDermott JP, Fujiwara T, Hayashi H, Yoneyama T, Davies JP (2002) Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transportof sulfate into roots. Plant J 29:475–486
CAS
Article
PubMed
Google Scholar
Smith FW, Ealing PM, Hawkesford MJ, Clarkson T (1995) Plantmembers of a family of sulfate transporters reveal functional sub types. Proc Natl Acad Sci 92:9373–9377
CAS
Article
PubMed
PubMed Central
Google Scholar
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integrationand network visualization. Bioinformatics 27:431–432
CAS
Article
PubMed
Google Scholar
Takahashi H (2010) Regulation of sulfate transport and assimilation inplants. Int Rev Cell Mol Biol 281:129–159
CAS
Article
PubMed
Google Scholar
Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, de Almeida-Engler J, Engler G, van Montagu M, Saito K (1997) Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulphate starved roots plays a central role inArabidopsis thaliana. Proc Natl Acad Sci 94:11102–11107
CAS
Article
PubMed
PubMed Central
Google Scholar
Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23:171–182
CAS
Article
PubMed
Google Scholar
Takahashi H, Buchner P, Yoshimoto N, Hawkesford MJ, Shiu SH (2012) Evolutionary relationships and functional diversity of plant sulfate transporters. Front Plant Sci 2:119
Article
PubMed
PubMed Central
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729
CAS
Article
PubMed
PubMed Central
Google Scholar
The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768
Article
Google Scholar
Timothy L, Mikael Bodén B, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:202–208
Article
Google Scholar
Tjellström H, Strawsine M, Silva J, Cahoon EB, Ohlrogge JB (2013) Disruption of plastid acyl: acyl carrier protein synthetases increases medium chain fatty acid accumulation in seeds of transgenic Arabidopsis. FEBS Lett 587:936–942
Article
PubMed
Google Scholar
Tombuloglu H, Ablazov A, Filiz E (2016) Genome-wide analysis of response to low sulfur (LSU) genes in grass species and expression profiling of model grass species Brachypodium distachyon under S deficiency. Turkish J Biol. doi:10.3906/biy-1508-32
Google Scholar
Verelst W, Bertolini E, De Bodt S, Vandepoele K, Demeulenaere M, Pè ME, Inzé D (2013) Molecular and physiological analysis of growth-limiting drought stress in Brachypodium distachyon leaves. Mol Plant 6:311–322
CAS
Article
PubMed
Google Scholar
Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate inArabidopsis root. Plant J 29:465–473
CAS
Article
PubMed
Google Scholar
Yoshimoto N, Inoue E, Saito K, Yamaya T, Takahashi H (2003) Phloem-localizing sulfate transporter, Sultr1; 3, mediates re-distribution of sulfur from source to sink organs in Arabidopsis. Plant Physiol 131:1511–1517
CAS
Article
PubMed
PubMed Central
Google Scholar
Yoshimoto N, Inoue E, Watanabe-Takahashi A, Saito K, Takahashi H (2007) Posttranscriptional regulation of high-affinity sulfate transporters in Arabidopsis by sulfur nutrition. Plant Physiol 145:378–388
CAS
Article
PubMed
PubMed Central
Google Scholar
Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651
CAS
Article
PubMed
Google Scholar
Zhang Z, Grewer C (2007) The sodium-coupled neutral amino acid transporter SNAT2 mediates an anion leak conductance that is differentially inhibited by transported substrates. Biophysical J 92:2621–2632
CAS
Article
Google Scholar
Zuber H, Davidian JC, Aubert G, Aime D, Belghazi M, Lugan R, Heintz D, Wirtz M, Hell R, Thompson R, Gallardo K (2010a) The seed composition of Arabidopsis mutants for the group 3 sulfate transporters indicates a role in sulfate translocation within developing seeds. Plant Physiol 154:913–926
CAS
Article
PubMed
PubMed Central
Google Scholar
Zuber H, Davidian JC, Wirtz M, Hell R, Belghazi M, Thompson R, Gallardo K (2010b) Sultr4;1 mutant seeds of Arabidopsis have an enhanced sulphate content and modified proteome suggesting metabolic adaptations to altered sulphate compartmentalization. BMC Plant Biol 10:78
Article
PubMed
PubMed Central
Google Scholar