Skip to main content
Log in

Metageographic population analysis of Colletotrichum truncatum associated with chili fruit rot and other hosts using ITS region nucleotide sequences

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Colletotrichum truncatum is one of the most economically important fungal pathogen causing anthracnose disease in pre and post-harvest stages of many crops worldwide. Little information is available in the literature on the genetic analysis and demographic history of this fungal pathogen. In the present study nucleotide sequence data of internal transcribed spacer (ITS) region were analyzed for C. truncatum isolates infecting chili and other crops worldwide to determine a metageographic pattern of distribution and evolution of the species. Levels of differentiation (genetic distances and F ST values) among sequences of C. truncatum from 23 countries were minimal suggesting the global occurrence of a large and geographically undifferentiated population. Only 11 haplotypes were detected among 98 isolates from 24 geographically distant populations of C. truncatum. Predominant haplotype H1 which occupied a central position in the median joining network was inferred to be ancestral haplotype as it was detected at a high frequency and was shared by multiple populations. Phylogeographic pattern of the species with worldwide presence and predominance of single haplotype suggests human mediated dispersal through domestication and introduction of host plants in different parts of the world, and might have played a significant role in structuring the populations of this devastating pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

rDNA:

Ribosomal deoxyribonucleic acid

ITS:

Internal transcribed spacer

MEGA:

Molecular evolutionary genetics analysis

cTAB:

Cetyl trimethylammonium bromide

DNA:

Deoxyribonucleic acid

References

  • Afanador-Kafuri L, Minz D, Maymon M, Freeman S (2003) Characterization of Colletotrichum isolates from Tamarillo, Passiflora and Mango in Colombia and identification of a unique species from the genus. Phytopathology 93:579–587

    Article  PubMed  Google Scholar 

  • Agostini JP, Gottwald T, Timmer LW (1993) Temporal and spatial dynamics of postbloom fruit drop of citrus in Florida. Phytopathology 83(5):485–490

    Article  Google Scholar 

  • Bandelt H-J, Macaulay V, Richards M (2000) Median networks: speedy construction and greedy reduction, one simulation, and two case studies from human mtDNA. Mol Phylogenet Evol 16(1):8–28

    Article  PubMed  Google Scholar 

  • Berbee ML, Taylor JW (2001) Fungal molecular evolution: gene trees and geologic time Systematics and Evolution. Springer, p 229–245

  • Bosland P, Votava EJ (2003) Peppers: vegetable and spice capsicums. Crop Production Science in Horticulture 12

  • Buchwaldt L, Morrall R, Chongo G, Bernier C (1996) Windborne dispersal of Colletotrichumtruncatum and survival in infested lentil debris. Phytopathology 86(11):1193–1198

    Article  Google Scholar 

  • Cai L et al (2009) A polyphasic approach for studying Colletotrichum. Fungal Divers 39(1):183–204

    Google Scholar 

  • Chen P, Ye H, Mu Q (2007) Migration and dispersal of the oriental fruit fly, Bactrocera dorsalis, in regions of Nujiang River based on fluorescence mark. Acta Ecol Sin 6:2468–2476

    Google Scholar 

  • Farr D, Rossman A, Palm M, McCray E (2007) Fungal databases. Systematic Botany & Mycology Laboratory, ARS, USDA http://nt.ars-grin.gov/sbmlweb/fungi/index.cfm

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed  PubMed Central  Google Scholar 

  • Ganley AR, Kobayashi T (2007) Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res 17(2):184–191

    Article  PubMed  PubMed Central  Google Scholar 

  • Garg R, Kumar S, Kumar R, Loganathan M, Saha S, Kumar S, Rai AW, Roy BK (2013) Novel source of resistance and differential reactions on chilli fruit infected by Colletotrichum capsici. Australas Plant Pathtol 42(2):227–233

    Article  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61(4):1323–1330

    PubMed  PubMed Central  Google Scholar 

  • Hadden J, Black L (1989) Anthracnose of pepper caused by Colletotrichum spp. In: Proceeding of the International Symposium on Integrated Management Practices: Tomato and Pepper Production in the Tropics Asian Vegetable Research and Development Centre, Taiwan, p 189–199

  • Hyde K et al (2009) Colletotrichum—names in current use. Fungal Divers 39:147

    Google Scholar 

  • James TY et al (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443(7113):818–822

    Article  PubMed  Google Scholar 

  • Karol KG, McCourt RM, Cimino MT, Delwiche CF (2001) The closest living relatives of land plants. Science 294(5550):2351–2353

    Article  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120

    Article  PubMed  Google Scholar 

  • Li J, Ye Y, Wu C, Qi P, Guo B, Chen Y (2013) Genetic variation ofMytilus coruscusGould (Bivalvia: Mytilidae) populations in the East China Sea inferred from mtDNA COI gene Sequence. Biochem Syst Ecol 50:30–38

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452

    Article  PubMed  Google Scholar 

  • McDermott JM, McDonald BA (1993) Gene flow in plant pathosystems. Ann Rev Phytopathol 31:353–373

    Article  Google Scholar 

  • McDonald BA (1997) The population genetics of fungi: tools and techniques. Phytopathology 87:448–453

    Article  PubMed  Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential and durable resistance. Ann Rev Phytopathol 40:349–379

    Article  Google Scholar 

  • Medina M, Collins AG, Silberman JD, Sogin ML (2001) Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc Natl Acad Sci 98(17):9707–9712

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer J, Taputuarai R, Killgore E (2007) Dissemination and impacts of the fungal pathogen, Colletotrichum gloeosporioides f. sp. miconiae, on the invasive alien tree, Miconia calvescens. In: Proceedings of the XIIth International Symposium on Biological Control of Weeds, La Grande Motte, France, p 22–27

  • Montri P, Taylor PWJ, Mongkolporn O (2009) Pathotypes of Colletotrichum capsici, the causal agent of chili anthracnose, in Thailand. Plant Dis 93:17–20

    Article  Google Scholar 

  • Murray M, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4326

    Article  PubMed  PubMed Central  Google Scholar 

  • Nilsson RH, Ryberg M, Abarenkov K, Sjökvist E, Kristiansson E (2009) The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol Lett 296(1):97–101

    Article  PubMed  Google Scholar 

  • O’Connell R, MLJ, Vaillancourt LJ et al (2012) Life-style transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 44:1060–1065

  • Park KS, Kim CH (1992) Identification, distribution and etiological characteristics of anthracnose fungi of red pepper in Korea. Plant Pathol J 8(1):61–69

    Google Scholar 

  • Photita W, Taylor PW, Ford R, Hyde KD, Lumyong S (2005) Morphological and molecular characterization of Colletotrichum species from herbaceous plants in Thailand. Fungal Divers 18:117–133

    Google Scholar 

  • Prabhakar CS, Mehta PK, Sood P, Singh SK, Sharma P, Sharma PN (2012) Population genetic structure of the melon fly, Bactrocera cucurbitae (Coquillett)(Diptera: Tephritidae) based on mitochondrial cytochrome oxidase (COI) gene sequences. Genetica 140(1–3):83–91

    Article  PubMed  Google Scholar 

  • Prabhakar CS, Sood P, Mehta PK, Sharma PN (2013) Population genetic structure of the pumpkin fruit fly, Bactrocera tau (Walker) (Diptera: Tephritidae) in Himachal Pradesh, India. Biochem Syst Ecol 51:291–296

  • Rampersad SN (2013) Genetic Structure of Colletotrichum gloeosporioides sensu lato Isolates Infecting Papaya Inferred by Multilocus ISSR Markers. Phytopathology 103(2):182–189

    Article  PubMed  Google Scholar 

  • Rampersad SN, Perez-Brito D, Torres-Calzada C, Tapia-Tussell R, Carrington CVF (2013) Genetic structure and demographic history of Colletotrichum gloeosporioides sensu lato and C. truncatum isolates from Trinidad and Mexico. BMC Evol Biol 13:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers AR (1995) Genetic evidence for a Pleistocene population explosion. Evolution 49:608–615

    Article  Google Scholar 

  • Rogers A, Harpending H (1992) Population growth makes waves in the distribution of pairwise differences. Mol Biol Evol 9:552–569

    PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    PubMed  Google Scholar 

  • Schoch CL et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A 109(16):6241–6246

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma PN, Kaur M, Sharma OP, Sharma P, Pathania A (2005) Morphological, pathological and molecular variability in colletotrichum capsici, the cause of fruit rot of chillies in the subtropical region of north‐western india. Phytopathol Z 153(4):232–237

    Article  Google Scholar 

  • Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129(2):555–562

    PubMed  PubMed Central  Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci U S A 97(13):7051–7057

    Article  PubMed  PubMed Central  Google Scholar 

  • Sreenivasaprasad S, Meehan B, Mills P, Brown A (1996) Phylogeny and systematics of 18 Colletotrichum species based on ribosomal DNA spacer sequences. Genome 39(3):499–512

    Article  PubMed  Google Scholar 

  • Sutton BC (1992) Colletotrichum: biology, pathology and control. In: Bailey JA and Jeger MJ (eds), Colletotrichum: biology, pathology and control, CAB International, Wallingford, UK, pp 1–26

  • Sydow H (1913) Beitrage zur kenntnis der PilzHora des Siidlichen Ostindiens-I. Anv Myc, XI 329

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595

    PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed  PubMed Central  Google Scholar 

  • Than P, Jeewon R, Hyde K, Pongsupasamit S, Mongkolporn O, Taylor P (2008) Characterization and pathogenicity of Colletotrichum species associated with anthracnose on chilli (Capsicum spp.) in Thailand. Plant Pathol 57(3):562–572

    Article  Google Scholar 

  • Torres-Calzada C, Tapia-Tussell R, Higuera-Ciapara I, Perez-Brito D (2013) Morphological, pathological and genetic diversity of Colletotrichum species responsible for anthracnose in papaya (Carica papaya L). Eur J Plant Pathol 135(1):67–79

    Article  Google Scholar 

  • Wan X, Nardi F, Zhang B, Liu Y (2011) The Oriental Fruit Fly, Bactrocera dorsalis, in China: origin and gradual inland range expansion associated with population growth. PLoS One 6(10), e25238

    Article  PubMed  PubMed Central  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18:315–322

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87(12):4576–4579

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The corresponding author is grateful to the Department of Science and Technology, Govt. of India, for financial assistance. We would like to thank the anonymous reviewers for their critical comments and suggestions for the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem N. Sharma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 18 kb)

Table S2

(XLS 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katoch, A., Prabhakar, C.S. & Sharma, P.N. Metageographic population analysis of Colletotrichum truncatum associated with chili fruit rot and other hosts using ITS region nucleotide sequences. J. Plant Biochem. Biotechnol. 25, 64–72 (2016). https://doi.org/10.1007/s13562-015-0310-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-015-0310-1

Key words

Navigation