Skip to main content
Log in

Effects of PAL and ICS on the production of total flavonoids, daidzein and puerarin in Pueraria thomsonii Benth. suspension cultures under low light stress

  • Original article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Under stress, some secondary metabolites are synthesized and accumulated in plants. Salicylic acid, which is synthesized through phenylalanine ammonia-lyase and isochorismate synthase, is involved in this response to stress. However, the effects of phenylalanine ammonia-lyase and isochorismate synthase on the total flavonoids and desirable isoflavonoids in plants under stress remain unknown. In this study, the effects of phenylalanine ammonia-lyase and isochorismate synthase on total flavonoids, daidzein and puerarin in Pueraria thomsonii Benth. under low light stress were investigated. When the phenylalanine ammonia-lyase activity was inhibited by l-AOPP, the salicylic acid content was not reduced, but gradually increased along with an increase of isochorismate synthase activity. The trends of salicylic acid and total flavonoid content were similarly consistent, but there was no significant positive correlation between phenylalanine ammonia-lyase suppression and total flavonoid production in P. thomsonii under low light stress. However, daidzein synthesis was correlated with the isochorismate synthase pathway, and puerarin with the phenylalanine ammonia-lyase pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

PAL:

Phenylalanine ammonia-lyase

ICS:

Isochorismate synthase

SA:

Salicylic acid

l-AOPP:

l-2-aminooxy-3-phenylpropionic acid

6-BA:

6-benzylaminopurine

2 4-D:

2, 4-dichlorophenoxyacetic acid

TCA:

Trichloroacetic acid

References

  • Amrhein N, Gerhardt J (1979) Superinduction of phenylalanineammonia-lyase in gherkin hypocotyls caused by the inhibitor, L-α-aminooxy-β-phenylpropionic acid. Biochim Biophys Acta 583:434–442

    Article  CAS  PubMed  Google Scholar 

  • Blount JW, Korth KL, Masoud SA, Rasmussen S, Lamb C, Dixon RA (2000) Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiol 122:107–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bolwell GP, Cramer CL, Lamb CJ, Schuch W, Dixon RA (1986) L-Phenylalanine ammonia-lyase from Phaseolus vulgaris: modulation of the levels of active enzyme by trans-cinnamic acid. Planta 169:97–107

    Article  CAS  PubMed  Google Scholar 

  • Buchanan B, Gruissem W, Jones R (2000) Biochemistry & Molecular Biology of Plants (1st edition USA). American Society of Plant Physiologists, pp1250-1316

  • Cheng SH, Sheen J, Gerrish C, Bolwell GP (2001) Molecular identification of phenylalanine ammonia-lyase as a substrate of a specific constitutively active Arabidopsis CDPK expressed in maize protoplasts. FEBS Lett 503:185–188

    Article  CAS  PubMed  Google Scholar 

  • Ciddi V, Srinivasan V, Shuler ML (1995) Elicitation of Taxus sp. cell cultures for production of taxol. Biotechnol Lett 17:1343–1346

    CAS  Google Scholar 

  • Dewdney J, Reuber TL, Wildermuth MC, Devoto A, Cui J, Stutius LM, Drummond EP, Ausubel FM (2000) Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen. Plant J 24:205–218

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Steele CL (1999) Flavonoids and isoflavonoids: a gold mine for metabolic engineering. Trends Plant Sci 4:394–400

    Article  PubMed  Google Scholar 

  • Dong J, Wan G, Liang Z (2010) Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J Biotechnol 148:99–104

    Article  CAS  PubMed  Google Scholar 

  • Hahlbrock K, Bednarek P, Ciolkowski I, Hamberger B, Heise A, Liedgens H, Logemann E, Nu¨rnberger T, Schmelzer E, Somssich IE, Tan J (2003) Non-self recognition, transcriptional reprogramming, and secondary metabolite accumulation during plant/pathogen interactions. Proc Natl Acad Sci USA 100:14569–14576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He X, Blount JW, Ge S, Tang Y, Dixon RA (2011) A genomic approach to isoflavone biosynthesis in kudzu (Pueraria lobata). Planta 233:843–855

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Fujita M (1977) Biosynthesis of puerarin in pueraria root. Chem Pharm Bull 25:3226–3231

    Article  CAS  Google Scholar 

  • Janas KM (1993) The control of L-phenylalanine ammonia-lyase activity by phosphonate and aminooxy analogues of phenylalanine. Acta Biochim Pol 40:451–454

    CAS  PubMed  Google Scholar 

  • Ke D, Saltveit ME (1986) Effects of calcium and auxin on russet spotting and phenylalanine ammonia-lyase activity in iceberg lettuce. Hortscience 21:1169–1171

    CAS  Google Scholar 

  • Lamb CJ (1979) Regulation of enzyme levels in phenylpropanoid biosynthesis: characterization of the modulation by light and pathway intermediates. Arch Biochem Biophys 192:311–317

    Article  CAS  PubMed  Google Scholar 

  • Láposi R, Veres S, Lakatos G, Oláh V, Fieldsend A, Mészáros I (2009) Responses of leaftraits of European beech (Fagus sylvatica L.) saplings to supplemental UV-B radiation and UV-B exclusion. Agr Forest Meteorol 149:745–755

    Article  Google Scholar 

  • Mavandad M, Edwards R, Liang X, Lamb CJ, Dixon RA (1990) Effects of trans-cinnamic acid on expression of the bean phenylalanine ammonia-lyase gene family. Plant Physiol 94:671–680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mustafa NR, Kim HK, Choi YH, Erkelens C, Lefeber AW, Spijksma G, van der Heijden R, Verpoorte R (2009) Biosynthesis of salicylic acid in fungus elicited Catharanthus roseus cells. Phytochemistry 70:532–539

    Article  CAS  PubMed  Google Scholar 

  • Ogawa D, Nakajima N, Tamaoki M, Aono M, Kubo A, Kamada H, Saji H (2007) The isochorismate pathway is negatively regulated by salicylic acid signaling in O3-exposed Arabidopsis. Planta 5:1277–1285

    Article  Google Scholar 

  • Oh MM, Trick HN, Rajashekar CB (2009) Secondary metabolism and antioxidants are involved in environmental adaptation and stress tolerance in lettuce. J Plant Physiol 166:180–191

    Article  CAS  PubMed  Google Scholar 

  • Poulsen CH, van der Heijden R, Verpoorte R (1991) Assay of isochorismate synthase from plant cell cultures by high-performance liquid chromatography. Phytochemistry 9:2873–2876

    Article  Google Scholar 

  • Pourcel L, Routaboul JM, Cheynier V, Lepiniec L, Debeaujon I (2007) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends Plant Sci 12:29–36

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Hashimoto T, Hachiya A, Tamura K, Choi KB, Morishige T, Fujimoto H, Yamada Y (2001) Metabolic engineering of plant alkaloid biosynthesis. Proc Natl Acad Sci USA 98:367–372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Serrano M, Kanehara K, Torres M, Yamada K, Tintor N, Kombrink E, Schulze-Lefert P, Saijo Y (2012) Repression of sucrose/ultraviolet B light-induced flavonoid accumulation in microbe-associated molecular pattern-triggered immunity in Arabidopsis. Plant Physiol 158:408–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shainberg O, Rubin B, Rabinowitch HD, Libal-Weksler Y, Tel-OR E (1999) Adjustment to low light intensity enhanced susceptibility of bean leaves to oxidative stress. Plant Physiol 155:393–398

    Article  CAS  Google Scholar 

  • Simoh S, Linthorst HJ, Lefeber AW, Erkelens C, Kim HK, Choi YH, Verpoorte R (2010) Metabolic changes of Brassica rapa transformed with a bacterial isochorismate synthase gene. J Plant Physiol 167:1525–1532

    Article  CAS  PubMed  Google Scholar 

  • Sønderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates-gene discovery and beyond. Trends Plant Sci 15:283–290

    Article  PubMed  Google Scholar 

  • Stafford HA (1997) Role of flavonoids in symbiotic and defense functions in legume roots. The Botanical Rev 63:27–39

    Article  Google Scholar 

  • Van Tegelen LJ, Moreno PR, Croes AF, Verpoorte R, Wullems GJ (1999) Purification and cDNA cloning of isochorismate synthase from elicited cell cultures of Catharanthus roseus. Plant Physiol 119:705–712

    Article  PubMed Central  PubMed  Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux JP, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wildermuth MC, Dewdney J, Wu G, Ausubel FM (2001) Isochorismate synthase is required to synthesize salicylic acid for plant defense. Nature 414:562–565

    Article  CAS  PubMed  Google Scholar 

  • Winkel-Shirley B (1996) Flavonoid biosynthesis: ‘new’ functions for an ‘old’ pathway. Trends Plant Sci 11:377–382

    Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid Biosynthesis: a colorful model for genetics, biochemistry, cell biology and biotechnology. Plant Physiol 126:485–493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang M, Cao T, Ni LY, Xie P, Li ZQ (2010) Carbon, nitrogen and antioxidant enzyme responses of Potamogeton crispus to both low light and high nutrient stresses. Environ Exp Bot 68:44–50

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Maojun Xu (Hangzhou Normal University, China) for providing the Pueraria thomsonii Benth. cells.

Author information

Authors and Affiliations

Corresponding author

Correspondence to Hu Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, H., Jiang, H. & Li, Y. Effects of PAL and ICS on the production of total flavonoids, daidzein and puerarin in Pueraria thomsonii Benth. suspension cultures under low light stress. J. Plant Biochem. Biotechnol. 24, 34–41 (2015). https://doi.org/10.1007/s13562-013-0233-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-013-0233-7

Keywords

Profiles

  1. Hu Su