Skip to main content
Log in

Preparation of cinnamoyl-CoA and analysis of the enzyme activity of recombinant CCR protein from Populus tomentosa

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cinnamoyl-CoA reductase (CCR, EC 1.2.1.44), which catalyzes the reduction of cinnamoyl-CoA esters to their respective cinnamaldehydes, is considered as a key enzyme in lignin formation. The substrates of CCR, cinnamoyl-CoA esters, are products of 4-Coumarate-CoA ligase (4CL, EC 6.2.1.12), which is an enzyme upstream of CCR. The PtCCR and Pt4CL were isolated from Populus tomentosa and expressed in E. coli. Results showed that 4CL can catalyze the conversion of hydroxycinnamic acids to cinnamoyl-CoA esters, with high efficiency. The purification of esters using SPE cartridges suggested that 40 % methanol with 0.1 M of acetic acid was the optimal elution buffer for cinnamoyl-CoA esters. The optimization of prokaryotic expression demonstrated that the best expression conditions for recombinant PtCCR was 6 h of 0.4 mM IPTG induction at 37 °C. PtCCR enzyme assay illustrated that the recombinant protein can catalyze the reduction of cinnamoyl-CoA esters. Kinetics analysis showed that feruloyl-CoA has higher affinity to PtCCR with faster reaction speed (Vmax), indicating that feruloyl-CoA was the most favorable substrate for PtCCR catalysis. The recombinant protein was expressed in E. coli, purified through affinity column chromatography, and characterized by SDS-PAGE. SPE cartridges were used to purify the ester products of the Pt4CL reaction. HPLC-MS was used to analyze the structure of esters and evaluate their purity or quantity. Furthermore, the enzyme activity of recombinant CCR to feruloyl-CoA at different pHs indicated that compartmentalization may be an important factor in lignin monomer formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CCR:

Cinnamoyl-CoA reductase

4CL:

4-Coumarate-CoA ligase

COMT:

Caffeate O-methyltransferase

CAD:

Cinnamyl alcohol dehydrogenase

HCA:

Hydroxycinnamic acid

HPLC-MS:

High performance liquid chromatography-mass spectrometry

References

  • Abe I, Takahashi Y, Morita H, Noguchi H (2001) Benzalacetone synthase. A novel polyketide synthase that plays a crucial role in the biosynthesis of phenylbutanones in Rheum palmatum. Eur J Biochem 268(11):3354–3359

    Article  PubMed  CAS  Google Scholar 

  • Back K, Jang SM, Lee BC, Schmidt A, Strack D, Kim KM (2001) Cloning and characterization of a hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)transferase induced in response to UV-C and wounding from Capsicum annuum. Plant Cell Physiol 42(5):475–481

    Article  PubMed  CAS  Google Scholar 

  • Baltas M, Lapeyre C, Bedos-Belval F, Maturano M, Saint-Aguet P, Roussel L, Duran H, Grima-Pettenati J (2005) Kinetic and inhibition studies of cinnamoyl-CoA reductase 1 from Arabidopsis thaliana. Plant Physiol Biochem 43(8):746–753

    Article  PubMed  CAS  Google Scholar 

  • Baucher M, Monties B, Van Montagu M, Boerjan W (1998) Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci 17(2):125–197

    Article  CAS  Google Scholar 

  • Baucher M, Halpin C, Petit-Conil M, Boerjan W (2003) Lignin: genetic engineering and impact on pulping. Crit Rev Biochem Mol Biol 38(4):305–350. doi:10.1080/10409230390242443

    Article  PubMed  CAS  Google Scholar 

  • Bernards MA, Susag LM, Bedgar DL, Anterola AM, Lewis NG (2000) Induced phenylpropanoid metabolism during suberization and lignification: a comparative analysis. J Plant Physiol 157(6):601–607

    Article  PubMed  CAS  Google Scholar 

  • Beuerle T, Pichersky E (2002) Enzymatic synthesis and purification of aromatic coenzyme a esters. Anal Biochem 302(2):305–312

    Article  PubMed  CAS  Google Scholar 

  • Bhuiya MW, Liu CJ (2010) Engineering monolignol 4-O-methyltransferases to modulate lignin biosynthesis. J Biol Chem 285(1):277–285. doi:10.1074/jbc.M109.036673

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • De Cooman L, Everaert ESW, Faché P, Casteele KV, Van Sumere CF (1993) Flavonoid biosynthesis in petals of Rhododendron simsii. Phytochemistry 33(6):1419–1426

    Article  Google Scholar 

  • El-Batal AI (2002) Optimization of reaction conditions and stabilization of phenylalanine ammonia lyase-containing Rhodotorula glutinis cells during bioconversion of trans-cinnamic acid to L-phenylalanine. Acta Microbiol Pol 51(2):139–152

    PubMed  CAS  Google Scholar 

  • Escamilla-Trevino LL, Shen H, Uppalapati SR, Ray T, Tang Y, Hernandez T, Yin Y, Xu Y, Dixon RA (2010) Switchgrass (Panicum virgatum) possesses a divergent family of cinnamoyl CoA reductases with distinct biochemical properties. New Phytol 185(1):143–155

    Article  PubMed  CAS  Google Scholar 

  • Goffner D, Campbell MM, Campargue C, Clastre M, Borderies G, Boudet A, Boudet AM (1994) Purification and characterization of cinnamoyl-coenzyme A:NADP oxidoreductase in eucalyptus gunnii. Plant Physiol 106(2):625–632

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goujon T, Ferret V, Mila I, Pollet B, Ruel K, Burlat V, Joseleau JP, Barriere Y, Lapierre C, Jouanin L (2003) Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta 217(2):218–228. doi:10.1007/s00425-003-0987-6

    PubMed  CAS  Google Scholar 

  • Gout E, Bligny R, Douce R (1992) Regulation of intracellular pH values in higher plant cells. Carbon-13 and phosphorus-31 nuclear magnetic resonance studies. J Biol Chem 267(20):13903–13909

    PubMed  CAS  Google Scholar 

  • Gui J, Shen J, Li L (2011) Functional characterization of evolutionarily divergent 4-coumarate:coenzyme a ligases in rice. Plant Physiol 157(2):574–586

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hamada K, Nishida T, Yamauchi K, Fukushima K, Kondo R, Tsutsumi Y (2004) 4-Coumarate:coenzyme A ligase in black locust (Robinia pseudoacacia) catalyses the conversion of sinapate to sinapoyl-CoA. J Plant Res 117(4):303–310

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, Legrand M (2004) Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell 16(6):1446–1465

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hu Y, Gai Y, Yin L, Wang X, Feng C, Feng L, Li D, Jiang XN, Wang DC (2010) Crystal structures of a Populus tomentosa 4-coumarate:CoA ligase shed light on its enzymatic mechanisms. Plant Cell 22(9):3093–3104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Humphreys JM, Hemm MR, Chapple C (1999) New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci U S A 96(18):10045–10050

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Urnemura K, Urnezawa T, Shimamoto K (2006) Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice. Proc Natl Acad Sci U S A 103(1):230–235

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Knobloch K-H, Hahlbrock K (1977) 4-Coumarate:CoA ligase from cell suspension cultures of Petroselinum hortense Hoffm: partial purification, substrate specificity, and further properties. Arch Biochem Biophys 184(1):237–248

    Article  PubMed  CAS  Google Scholar 

  • Koopmann E, Logemann E, Hahlbrock K (1999) Regulation and functional expression of cinnamate 4-hydroxylase from parsley. Plant Physiol 119(1):49–56

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lacombe E, Hawkins S, Van Doorsselaere J, Piquemal J, Goffner D, Poeydomenge O, Boudet AM, Grima-Pettenati J (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J 11(3):429–441

    Article  PubMed  CAS  Google Scholar 

  • Larsen K (2004) Molecular cloning and characterization of cDNAs encoding cinnamoyl CoA reductase (CCR) from barley (Hordeum vulgare) and potato (Solanum tuberosum). J Plant Physiol 161(1):105–112

    Article  PubMed  CAS  Google Scholar 

  • Lauvergeat V, Lacomme C, Lacombe E, Lasserre E, Roby D, Grima-Pettenati J (2001) Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry 57(7):1187–1195

    Article  PubMed  CAS  Google Scholar 

  • Lazar T (2005) Biochemistry and molecular and biology of plants. Cell Biochem Funct 23(2):148–148

    Article  Google Scholar 

  • Leple JC, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang KY, Kim H, Ruel K, Lefebvre A, Joseleau JP, Grima-Pettenati J, De Rycke R, Andersson-Gunneras S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD, Ralph J, Pilate G, Boerjan W (2007) Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell 19(11):3669–3691

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li L, Osakabe Y, Joshi CP, Chiang VL (1999) Secondary xylem-specific expression of caffeoyl-coenzyme A 3-O-methyltransferase plays an important role in the methylation pathway associated with lignin biosynthesis in loblolly pine. Plant Mol Biol 40(4):555–565

    Article  PubMed  CAS  Google Scholar 

  • Li L, Popko JL, Umezawa T, Chiang VL (2000) 5-hydroxyconiferyl aldehyde modulates enzymatic methylation for syringyl monolignol formation, a new view of monolignol biosynthesis in angiosperms. J Biol Chem 275(9):6537–6545

    Article  PubMed  CAS  Google Scholar 

  • Li L, Cheng XF, Leshkevich J, Umezawa T, Harding SA, Chiang VL (2001) The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell 13(7):1567–1586

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li L, Cheng X, Lu S, Nakatsubo T, Umezawa T, Chiang VL (2005) Clarification of cinnamoyl co-enzyme A reductase catalysis in monolignol biosynthesis of Aspen. Plant Cell Physiol 46(7):1073–1082

    Article  PubMed  CAS  Google Scholar 

  • Luderitz T, Grisebach H (1981) Enzymic synthesis of lignin precursors. Comparison of cinnamoyl-CoA reductase and cinnamyl alcohol:NADP + dehydrogenase from spruce (Picea abies L.) and soybean (Glycine max L.). Eur J Biochem 119(1):115–124

    Article  PubMed  CAS  Google Scholar 

  • Ma QH (2007) Characterization of a cinnamoyl-CoA reductase that is associated with stem development in wheat. J Exp Bot 58(8):2011–2021

    Article  PubMed  CAS  Google Scholar 

  • Ma QH, Tian B (2005) Biochemical characterization of a cinnamoyl-CoA reductase from wheat. Biol Chem 386(6):553–560

    Article  PubMed  CAS  Google Scholar 

  • McInnes R, Lidgett A, Lynch D, Huxley H, Jones E, Mahoney N, Spangenberg G (2002) Isolation and characterization of a cinnamoyl-CoA reductase gene from perennial ryegrass (Lolium perenne). J Plant Physiol 159(4):415–422

    Article  CAS  Google Scholar 

  • Meng H, Campbell WH (1997) Facile enzymic synthesis of caffeoyl CoA. Phytochemistry 44(4):605–608

    Article  CAS  Google Scholar 

  • Meng H, Campbell WH (1998) Substrate profiles and expression of caffeoyl coenzyme A and caffeic acid O-methyltransferases in secondary xylem of aspen during seasonal development. Plant Mol Biol 38(4):513–520

    Article  PubMed  CAS  Google Scholar 

  • Obel N, Scheller HV (2000) Enzymatic synthesis and purification of caffeoyl-CoA, p-coumaroyl-CoA, and feruloyl-CoA. Anal Biochem 286(1):38–44

    Article  PubMed  CAS  Google Scholar 

  • Osakabe K, Tsao CC, Li L, Popko JL, Umezawa T, Carraway DT, Smeltzer RH, Joshi CP, Chiang VL (1999) Coniferyl aldehyde 5-hydroxylation and methylation direct syringyl lignin biosynthesis in angiosperms. Proc Natl Acad Sci U S A 96(16):8955–8960

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pan X, Li H, Wei H, Su W, Jiang X, Lu H (2012) Analysis of the spatial and temporal expression pattern directed by the Populus tomentosa 4-coumarate:CoA ligase Pto4CL2 promoter in transgenic tobacco. Mol Biol Rep

  • Pichon M, Courbou I, Beckert M, Boudet AM, Grima-Pettenati J (1998) Cloning and characterization of two maize cDNAs encoding cinnamoyl-CoA reductase (CCR) and differential expression of the corresponding genes. Plant Mol Biol 38(4):671–676

    Article  PubMed  CAS  Google Scholar 

  • Ralph J, Hatfield RD, Piquemal J, Yahiaoui N, Pean M, Lapierre C, Boudet AM (1998) NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamylalcohol dehydrogenase and cinnamoyl-CoA reductase. Proc Natl Acad Sci U S A 95(22):12803–12808

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sarni F, Grand C, Boudet AM (1984) Purification and properties of cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase from poplar stems (Populus X euramericana). Eur J Biochem 139(2):259–265

    Article  PubMed  CAS  Google Scholar 

  • Selman-Housein G, MaA L, Hernández D, Civardi L, Miranda F, Rigau J, Puigdomènech P (1999) Molecular cloning of cDNAs coding for three sugarcane enzymes involved in lignification. Plant Sci 143(2):163–171

    Article  CAS  Google Scholar 

  • Stockigt J, Zenk MH (1975) Chemical syntheses and properties of hydroxycinnamoyl-coenzyme A derivatives. Z Naturforsch C Biosci 30(3):352–358

    CAS  Google Scholar 

  • Teutsch HG, Hasenfratz MP, Lesot A, Stoltz C, Garnier JM, Jeltsch JM, Durst F, Werck-Reichhart D (1993) Isolation and sequence of a cDNA encoding the Jerusalem artichoke cinnamate 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway. Proc Natl Acad Sci U S A 90(9):4102–4106

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thoden JB, Hegeman AD, Wesenberg G, Chapeau MC, Frey PA, Holden HM (1997) Structural analysis of UDP-sugar binding to UDP-galactose 4-epimerase from Escherichia coli. Biochemistry 36(21):6294–6304. doi:10.1021/bi970025j

    Article  PubMed  CAS  Google Scholar 

  • Tu Y, Rochfort S, Liu Z, Ran Y, Griffith M, Badenhorst P, Louie GV, Bowman ME, Smith KF, Noel JP, Mouradov A, Spangenberg G (2010) Functional analyses of caffeic acid O-methyltransferase and cinnamoyl-CoA-reductase genes from perennial ryegrass (Lolium perenne). Plant Cell 22(10):3357–3373

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11(3):278–285

    Article  PubMed  CAS  Google Scholar 

  • Wadenback J, von Arnold S, Egertsdotter U, Walter MH, Grima-Pettenati J, Goffner D, Gellerstedt G, Gullion T, Clapham D (2008) Lignin biosynthesis in transgenic Norway spruce plants harboring an antisense construct for cinnamoyl CoA reductase (CCR). Transgenic Res 17(3):379–392. doi:10.1007/s11248-007-9113-z

    Article  PubMed  Google Scholar 

  • Wang D-D, Bai H, Hai L, Xiang-Ning J (2009) Identifying a cinnamoyl coenzyme A reductase (CCR) activity with 4-coumaric acid: coenzyme A ligase (4CL) reaction products in Populus tomentosa. J Plant Biol 52(5):482–491

    Article  CAS  Google Scholar 

  • Wengenmayer H, Ebel J, Grisebach H (1976) Enzymic synthesis of lignin precursors. Purification and properties of a cinnamoyl-CoA: NADPH reductase from cell suspension cultures of soybean (Glycinemax). Eur J Biochem 65(2):529–536

    Article  PubMed  CAS  Google Scholar 

  • Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7(7):1001–1013

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wyrambik D, Grisebach H (1975) Purification and properties of isoenzymes of cinnamyl-alcohol dehydrogenase from soybean-cell-suspension cultures. Eur J Biochem 59(1):9–15

    Article  PubMed  CAS  Google Scholar 

  • Yabuya T, Yamaguchi M, Fukui Y, Katoh K, Imayama T, Ino II (2001) Characterization of anthocyanin p-coumaroyltransferase in flowers of Iris ensata. Plant Sci 160(3):499–503

    Article  PubMed  CAS  Google Scholar 

  • Ye ZH, Kneusel RE, Matern U, Varner JE (1994) An alternative methylation pathway in lignin biosynthesis in Zinnia. Plant Cell 6(10):1427–1439

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yong BAI, Wei G, Tianyun LIU, Yuxian Z (2003) Cloning and expressional analyses of a cinnamoyl CoA reductase cDNA from rice seedlings. Chin Sci Bull 48(20):2221–2225

    Article  Google Scholar 

Download references

Acknowledgments

The work was jointly supported by the National High Technology Research and Development (863 Program 2011AA100203), National Natural Science Foundation Project (Grant No. 30630053) to Dr. Xiangning Jiang and Project of Beijing Forestry University Young Scientist Fund (No.2010BLX03) to Dr. Ying Gai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangning Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4374 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, B., Liu, S., Gai, Y. et al. Preparation of cinnamoyl-CoA and analysis of the enzyme activity of recombinant CCR protein from Populus tomentosa . J. Plant Biochem. Biotechnol. 23, 348–357 (2014). https://doi.org/10.1007/s13562-013-0218-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-013-0218-6

Keywords

Navigation