Skip to main content

Advertisement

Log in

Isolation and characterization of an AP2/ERF-type drought stress inducible transcription factor encoding gene from rice

  • Original article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A genomic DNA fragment of 964 bp corresponding to AP2/ERF family transcription factor was isolated from drought tolerant Oryza sativa L. cv. ‘N-22’ (AP2/ERF-‘N-22’) and Oryza sativa L. cv. ‘Teipei 309’ (AP2/ERF-jap). The cDNA sequence of AP2/ERF-‘N-22’ (732 bp) was amplified using gene specific primers. The gene contains two exons and a single intron. The deduced protein of the AP2/ERF-‘N-22’ contains a potential nuclear localization signal, a possible regulation domain and an AP2 DNA binding domain of 60 amino acids. Northern and RT-PCR analysis showed that transcript of AP2/ERF-‘N-22’ accumulates in response to WDS and the Southern analysis indicated the presence of single copy of AP2/ERF-‘N-22’ gene in Oryza sativa genome. Phylogenetic analysis of AP2/ERF family revealed that AP2/ERF-‘N-22’ belongs to group Va along with SHN clade of AP2/ERF protein which activates wax biosynthesis. A higher epicuticular wax content was observed at decreased RWC and positively correlated with AP2/ERF-‘N-22’ expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AP2:

Apetala

WDS:

Water deficit stress

ERF:

Ethylene responsive factor

DRE/CRT:

Drought responsive element/C-repeat element

EREBP:

Ethylene responsive element binding protein

ABA:

Abscisic acid

RT-PCR:

Reverse transcriptase PCR

EREB:

Ethylene responsive element binding protein

AP:

APETALA

ABA:

Abscisic acid

DREB:

Drought responsive element binding protein

RWC:

Relative water content

SHN/WIN:

Shine/wax inducer

References

  • Abdeen A, Schnell J, Miki B (2010) Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3. Genomics 11:69

    PubMed  Google Scholar 

  • Aharoni AB, Dixit BR, Jetter R, Thoenes E, Van-Arket G, Pereira A (2004) The shine clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties and confers drought tolerance when over expressed in Arabidopsis. Plant Cell 16:2463–2480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alcamo J, Henrichs T, Rosch T (2000) World water in 2025—global modeling and scenario analysis for the World Commission on Water for the 21st Century., Kassel World Water Report No. 2, Centre for Environmental Systems Research, University of Kassel, Germany

  • Bhatnagar-Mathur P, Devi MJ, Vadez V, Sharma KK (2009) Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress. J Plant Physiol 166:1207–1217

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment potential for increasing crop plant productivity, genotypic selection. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  • Broun P, Poindexter P, Osborne E, Jiang CZ, Riechmann JL (2004) WIN 1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA 101:4706–4711

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Wang QY, Cheng XG, Xu ZS, Li LC (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305

    Article  CAS  PubMed  Google Scholar 

  • Ebercon A, Blum A, Jordan WR (1977) A rapid colorimetric method for epicuticular wax content of sorghum leaves. Crop Sci 17:179–180

    Article  Google Scholar 

  • FAO (2010) Global Forest Resources Assessment The final report of FRA. The Start of the Latest Biennial Meeting of the. FAO’ Committee on Forestry and World Forest Week, Rome

    Google Scholar 

  • Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000) Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393–404

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gleick PH (1993) Water and conflict: fresh water resources and international security. Int Secur 18(1):79–112

    Article  Google Scholar 

  • Gosal SS, Wani SH, Kang MS (2009) Biotechnology and drought tolerance. J Crop Improv 23:19–54

    Article  CAS  Google Scholar 

  • Haque MM, Mackill DJ, Ingram KT (1992) Inheritance of leaf epicuticular wax content in rice. Crop Sci 32:865–868

    Article  CAS  Google Scholar 

  • Ishitani M, Xiong L, Stevenson B, Zhu JK (1997) Genetic analysis of osmotic and cold stress signal transduction in arabidopsis: lnteractions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9:1935–1949

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Shinozaki K (1999) Improving plant drought, salt and freezing tolerance by gene transfer of a single stress inducible transcription factor. Nat Biotechnol 17:287–291

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34

    Article  CAS  PubMed  Google Scholar 

  • Krizek BA, Sulli C (2006) Mapping sequences required for nuclear localization and the transcriptional activation function of the Arabidopsis protein AINTEGUMENTA. Planta 224:612–621

    Article  CAS  PubMed  Google Scholar 

  • Lin RC, Park HJ, Wang HY (2008) Role of Arabidopsis RAP2.4 in regulating light- and ethylene-mediated developmental processes and drought stress tolerance. Mol Plant 1:42–57

    Article  CAS  PubMed  Google Scholar 

  • Magnani E, Sjolander K, Hake S (2004) From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell 16:2265–2277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morran S, Eini O, Pyvovarenko T, Parent B, Singh R (2010) Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J 9:230–249

    Article  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of ERF Gene family in Arabidopsis and Rice. Plant Physiol 140(2):411–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Toole JC, Cruz RT (1983) Genotypic variation in epicuticular wax of rice. Crop Sci 23:392–394

    Article  Google Scholar 

  • O’Toole JC, Cruz RT, Seiber JN (1979) Epicuticular wax and cuticular resistance in rice. Physiol Plant 47:239–244

    Article  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379(6):633–646

    CAS  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Maryyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci 103:18822–18827

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Saneoka H, Ogata S (1987) Relationship between water use efficiency and cuticular wax deposition in warm season forage crops grown under water deficit conditions. Soil Sci Plant Nutr 33:439–448

    Article  CAS  Google Scholar 

  • Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Proc Natl Acad Sci 97:11632–11637

    Article  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2004) Plant response to stress regulation of plant gene expression to drought. Encyclopedia of Pl Crop Sci 999–1001

  • Trujillo LE, Sotolongo M, Menendez C, Ochogava ME, Coll Y (2008) SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when over-expressed in tobacco plants. Plant Cell Physiol 49:512–515

    Article  CAS  PubMed  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotech 16:123–132

    Article  CAS  PubMed  Google Scholar 

  • Wang QY, Guan YC, Wu YR, Chen HL, Chen F, Chu CC (2008) Over expression of a rice OsDREB1F gene increases salt, drought and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602

    Article  CAS  PubMed  Google Scholar 

  • Weatherley PE (1950) Studies on water relations of cotton plants. I. The field measurement of water deficit in leaves. New Phytol 40:81–97

    Article  Google Scholar 

  • Zheng X, Chen B, Lu G, Han B (2009) Over expression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379:985–989

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Zhang J, Gao X, Tong J, Xiao L, Li W, Zhang H (2010) The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses. Gene 457:1–12

    Article  CAS  PubMed  Google Scholar 

  • Zou M, Guan Y, Ren H, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66:675–683

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aruna Tyagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mawlong, I., Ali, K., Kurup, D. et al. Isolation and characterization of an AP2/ERF-type drought stress inducible transcription factor encoding gene from rice. J. Plant Biochem. Biotechnol. 23, 42–51 (2014). https://doi.org/10.1007/s13562-012-0185-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-012-0185-3

Keywords

Navigation