Skip to main content
Log in

Jasmonates modulate the promotion effects induced by SNP on root development of wheat under osmotic stress through lipoxygenase activation

  • Original article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We investigated promotion effects of exogenous sodium nitroprusside (SNP) on wheat seedling (Triticum aestivum L.) lateral root (LR) and root hair development, and the relationship between endogenous jasmonate (JA) production and activity changes of lipoxygenase (LOX) isoenzymes under osmotic stress generated by 15 % PEG-6000. Our results showed that 25 or 50 μM SNP could significantly increase LR length and number whether or not the seedlings were under PEG stress. When 50 μM cPTIO, 50 μM SHAM or 50 μM NDGA was supplemented, the promotion effects of SNP were blocked. SNP could also induce the production of endogenous JAs in roots, and 25 μM SNP induced the maximum JA content. The effect of SNP on JA production could also be blocked by adding cPTIO, SHAM or NDGA. Furthermore, the activity of lipoxygenase (LOX) in roots was affected by SNP; the maximal activity of LOX also occurred in the roots treated by 25 μM SNP under PEG stress, or 50 μM SNP without PEG stress. LOX isoenzymes in roots were detected by electrophoresis; the results showed that 25 μM SNP could noticeably increase the activities of LOXII and LOXIII under PEG stress. Our results suggest that, under osmotic stress generated by PEG, the promotion effects of exogenous SNP on wheat LR and root hair development could be mediated by endogenous JAs through LOX activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LR:

Lateral root

NO:

Nitric oxide

PEG:

Polyethylene glycol

SNP:

Sodium nitroprusside

cPTIO:

2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide

JAs:

Jasmonates

SHAM:

Salicylhydroxamic acid

NDGA:

Nordihydroguaiaretic acid

LOX:

Lipoxygenase

DMSO:

Dimethylsulfoxide

References

  • Acosta IF, Farmer EE (2010) Jasmonates. The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD

    Google Scholar 

  • Albrecht T, Kehlen A, Stahl K, Knöfel HD, Sembdner G, Weiler EW (1993) Quantification of rapid, transient increase in Jasmonic acid in wounded plants using a monoclonal antibody. Planta 191:86–94

    Article  CAS  Google Scholar 

  • Balbi V, Devoto A (2008) Jssmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177:301–318

    Article  CAS  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (2001) Nitric oxide in plants: the history is just beginning. Plant Cell Environ 24:267–278

    Article  CAS  Google Scholar 

  • Bell E, Creelman RA, Mullet JE (1995) A chloroplast lipoxygenase is required for wound-induced Jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci USA 92:8675–8679

    Article  CAS  PubMed  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960

    Article  CAS  PubMed  Google Scholar 

  • Brandford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  Google Scholar 

  • Carcía-Mata C, Lamattina L (2002) Nitric oxide and abscisic acid cross talk in guard cells. Plant Physiol 128:790–792

    Article  Google Scholar 

  • Clark D, Durner J, Navarre DA, Klessig DF (2000) Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant Microbe Interact 13:1380–1384

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905

    Article  CAS  PubMed  Google Scholar 

  • Correa-Aragunde N, Graziano M, Chevalier C, Lamattina L (2006) Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J Exp Bot 57:581–588

    Article  CAS  PubMed  Google Scholar 

  • Creus CM, Graziano M, Casanovas EM, Pereyra MA, Simontacchi M, Puntarulo S, Barassi CA, Lamattina L (2005) Nitric oxide is involved in the Azospirillum brasilense-induced lateral root formation in tomato. Planta 221:297–303

    Article  CAS  PubMed  Google Scholar 

  • Davis BJ (1964) Disc electrophoresis-II. Method and application to human serum proteins. Ann N Y Acad Sci 121:404–427

    Article  CAS  PubMed  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  CAS  PubMed  Google Scholar 

  • Ferrer MA, Barceló AR (1999) Differential effects of nitric oxide on peroxidase and H2O2 production by the xylem of Zinnia elegans. Plant Cell Environ 22:891–897

    Article  CAS  Google Scholar 

  • Funk MO, Whitney MA, Hausknecht EC, O’ Brien EM (1985) Resolution of the isoenzymes of soybean lipoxygenase using isoelectric focusing and chromatofocusing. Anal Biochem 146:246–251

    Article  CAS  PubMed  Google Scholar 

  • Gao HJ, Yang HQ (2011) Nitric oxide effect on root architecture development in Malus seedlings. Plant Soil Environ 57:418–422

    CAS  Google Scholar 

  • García-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126:1196–1204

    Article  PubMed  Google Scholar 

  • Hochholdinger F, Park WJ, Feix GH (2001) Cooperative action of SLR1 and SLR2 is required for lateral root-specific cell elongation in maize. Plant Physiol 125:1529–1539

    Article  CAS  PubMed  Google Scholar 

  • Hochholdinger F, Park WJ, Sauer M, Woll K (2004) From weeds to crops: genetic analysis of root development in cereals. Trends Plant Sci 9:42–48

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Li W, Chen Q, Yang Y (2009) Early signal transduction linking the synthesis of Jasmonic acid in plant. Plant Signal Behav 4:696–697

    Article  CAS  PubMed  Google Scholar 

  • Leyser D, Fitter A (1998) Roots are branching out in patches. Trends Plant Sci 3:203–204

    Article  Google Scholar 

  • Malamy JE, Benfey PN (1997) Down and out in Arabidopsis: the formation of lateral roots. Trends Plant Sci 2:390–396

    Article  Google Scholar 

  • Navarre DA, Wendehenne D, Durner J, Noad R, Klessig DF (2000) Nitric oxide modulates the activity of tobacco aconitase. Plant Physiol 122:573–582

    Article  CAS  PubMed  Google Scholar 

  • Neil S, Desikan R, Hancock J (2003) Nitric oxide as a mediator of ABA signaling in stomatal guard cells. Bulg J Plant Physiol special issue: 124–132

  • Nelson MJ (1987) The nitric oxide complex of ferrous soybean lipoxygenase-1. Substrate, pH, and ethanol effects on the active-site iron. J Biol Chem 262:12137–12142

    CAS  PubMed  Google Scholar 

  • O’ Dennell VB, Taylor KB, Parthasarathy S, Kühn H, Koesling D, Friebe A, Bloodsworth A, Darley-Usmar VM, Freeman BA (1999) 15-lipoxygenase catalytically consumes nitric oxide and impairs activation of guanylate cyclase. J Biol Chem 274:20083–20091

    Article  Google Scholar 

  • Orozco-Cárdenas ML, Ryan CA (2002) Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol 130:487–493

    Article  PubMed  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132:1241–1248

    Article  CAS  PubMed  Google Scholar 

  • Péret B, Larrieu A, Bennett MJ (2009) Lateral root emergence: a difficult birth. J Exp Bot 60:3637–3644

    Article  PubMed  Google Scholar 

  • Schaller F (2001) Enzymes of the biosynthesis of octadecanoid-derived signaling molecules. J Exp Bot 52:11–23

    Article  CAS  PubMed  Google Scholar 

  • Skórzyńska-Polit E, Krupa Z (2003) The activity of lipoxygenase in Arabidopsis thaliana (L.) Heynh–a preliminary study. Cell Mol Biol Lett 8:279–284

    PubMed  Google Scholar 

  • Stöhr C, Ullrich WR (2002) Generation and possible roles of NO in plant roots and their apoplastic space. J Exp Bot 53:2293–2303

    Article  PubMed  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The Jasmonate signal pathway. Plant Cell 14:S153–S164

    CAS  PubMed  Google Scholar 

  • Vick BA, Zimmerman DC (1987) Oxidative systems for modification of fatty acids: the lipoxygenase pathway. In: Stumpf PK, Conn EE (eds) The biochemistry of plants. Academic, New York, pp 54–90

    Google Scholar 

  • Wang S, Ichii M, Taketa S, Xu L, Xia K, Zhou X (2002) Lateral root formation in rice (Oryza sativa): promotion effect of Jasmonic acid. J Plant Physiol 159:827–832

    Article  CAS  Google Scholar 

  • Wasternack C, Kombrink E (2010) Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem Biol 5:63–77

    Article  CAS  PubMed  Google Scholar 

  • Yara A, Yaeno T, Hasegawa M, Seto H, Montillet JL, Kusumi K, Seo S, Iba K (2007) Disease resistance against Magnaporthe grisea is enhanced in transgenic rice with suppression of ω-3 fatty acid desaturases. Plant Cell Physiol 48:1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Yoshii M, Yamazaki M, Rakwal R, Kishi-Kaboshi M, Miyao A, Hirochika H (2010) The NAC transcription factor RIM1 of rice is a new regulator of Jasmonate signaling. Plant J 61:804–815

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Gan L, Shen Z, Xia K (2006) Interactions between Jasmonates and ethylene in the regulation of root hair development in Arabidopsis. J Exp Bot 57:1299–1308

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (30871461 and 31000363). We are very grateful to Prof. Kai Xia for his assistance in the measuring of endogenous JAs, and Prof. Qingya Wang for his taking pictures of wheat roots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Langlai Xu.

Additional information

Xianye Wang and Ning Wang contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Wang, N., Rui, Q. et al. Jasmonates modulate the promotion effects induced by SNP on root development of wheat under osmotic stress through lipoxygenase activation. J. Plant Biochem. Biotechnol. 22, 295–303 (2013). https://doi.org/10.1007/s13562-012-0158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-012-0158-6

Keywords

Navigation