Skip to main content
Log in

Partial purification and characterization of peroxidases from the leaves of Sapindus mukorossi

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Peroxidases were isolated from Sapindus mukorossi (Reetha) and partially purified using acetone precipitation, ion-exchange chromatography with a 14-fold purification, 22% recovery and a specific activity of 266 × 103 units/mg protein. Sapindus peroxidases (SPases) showed six bands after acetone precipitation and one distinct band after ion exchange chromatography on Native-PAGE after zymography. Enzymes purified by ion exchange chromatography were loaded on Sepahdex G-50 superfine column and their molecular weight was reported to be 25 kDa. They showed temperature optima at 50°C and pH optima at 5.0. km for SPases was reported to be 1.05 mM and 0.186 mM for guaiacol and H2O2 respectively. The Vmax/Km value for o-dianisidine was 449 while for H2O2 it was 5 × 105. Protocatechuic acid acts as a potent inhibitor for SPases (6.0% relative activity at 4.5 μM) but ferulic acid inhibits its activity at a much lower concentration (0.02 μM). Enzymes were stimulated by metal cations like Cu2+, Ca2+ (145, 168; percentage relative activity respectively) and showed mild inhibition (up to 20%) with Mn2+ and Mg2+. Alanine stimulated the enzyme activity (up to 33%; at 0–100 μM) while other amino acids like cysteine, methionine, tryptophan and tyrosine inhibited the SPases (13–57% at 0–100 μM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

SPase:

Sapindus peroxidase

HRP:

Horse radish peroxidase

CM-cellulose:

Carboxymethyl cellulose

Vo:

Void volume

Ve:

Elution volume

kDa:

kiloDalton

Native-PAGE:

Native-Polyacrylamide Gel Electrophoresis

SDS-PAGE:

Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis

References

  • Almagro L, Gomez Ros LV, Belchi-Navarro S, Bru R, RosBarcelo A, Pedreio MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390

    Google Scholar 

  • Bakardjieva N, Christova N, Nenkova R, Christov K (1999) Calcium ions, proline, tryptophan, valine and alanine are effectors of the activity and thermostability of horseradish peroxidase. Plant Peroxidase Newsletter 12:47–52

    Google Scholar 

  • Cosio C, Dunand C (2008) Specific functions of individual class III peroxidase genes. J Exp Bot 60(2):391–408

    Article  PubMed  Google Scholar 

  • Dalal S, Gupta MN (2010) Purification and characterization of a peroxidase isozyme from Indian turnip roots. J Agric Food Chem 58(9):5545–5552

    Google Scholar 

  • Deepa SS, Arumughan C (2002) Oil palm fruit peroxidase: purification and characterization. J Food Sci Technol 39:8–13

    CAS  Google Scholar 

  • Duarte-Vázquez MA, García-Almendárez B, Regalado C, Whitaker, JR (2000) Purification and partial characterization of three turnip (Brassica napus L. Var. Esculenta, DC) peroxidases. J Agric Food Chem 48:1574–1579

    Google Scholar 

  • Dubey A, Diwakar SK, Rawat SK, Kumar P, Batra N, Joshi A, Singh J (2007) Characterization of ionically bound peroxidases from apple (Malluspumilus) fruits. Prep Biochem Biotechnol 37:1–12

    Article  Google Scholar 

  • Dunford HB (1999) Heme peroxidase nomenclature; Plant Peroxidase News Letter. Plant Physiol Biochem 65–71

  • Hamid M, Khalil-ur-Rehman (2009) Potential applications of peroxidases. Food Chem 115(4):1177–1186

    Article  CAS  Google Scholar 

  • Haschke RH, Friedhoff JM (1978) Calcium-related properties of horseradish peroxidase. Biochem Biophys Res Commun 80:1039–1042

    Article  PubMed  CAS  Google Scholar 

  • Hunter RL, Markert CL (1957) Histochemical demonstration of enzymes separated by zone electrophoresis in starch gels. Science 125:1294–1295

    Article  PubMed  CAS  Google Scholar 

  • Husain M, Husain Q (2008) Applications of redox mediators in the treatment of organic pollutants by using oxidoreductive enzymes. A review. Crit Rev Environ Sci Technol 38:1–42

    Article  CAS  Google Scholar 

  • Johri S, Jamwal U, Rasool S, Kumar A, Verma V, Qazi GN (2005) Purification and characterization of peroxiases from Withania somnifera (AGB 002) and their ability to oxidize IAA. Plant Sci 169:1014–1021

    Article  CAS  Google Scholar 

  • Kim SS, Lee DJ (2005) Purification and characterization of a cationic peroxidase Cs in Raphanus sativus. J Plant Physiol 162:609–617

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Kamle M, Singh J, Rao DP (2008) Isolation and characterization of peroxidase from the leaves of Ricinus communis. J Biotech Biochem 4(4):283–292

    Google Scholar 

  • Lai LS, Wang DJ, Chang CT, Wang CH (2006) Catalytic characteristics of peroxidase from wheat grass. J Agric Food Chem 54(22):8611–8616

    Article  PubMed  CAS  Google Scholar 

  • Lobarzewski J, Brzyska M, Wojcik A (1990) The influence of metal ions on the soluble and immobilized cytoplasmic cabbage peroxidase activity and its kinetics. J Mol Catal 59:373–383

    Article  CAS  Google Scholar 

  • Lopez-Serrano M, Fernandez MD, Pomar F, Pedreno MA, Barcelo AR (2004) Zinnia elegans uses the same peroxidase isoenzyme complement for cell wall lignification in both single–cell tracheary elements and xylem vessels. J Exp Bot 55:423–431

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosenbrough W, Farr AL, Rondal RJ (1951) Protein measurement with the folin-phenol reagent. J Biol Chem 193:265–273

    Google Scholar 

  • Mahmoudi A, Nazari K, Mohammadian N, Moosavi-Movahedi AA (2003) Effect of Mn2+, Co2+, Ni2+, and Cu2+ on horseradish peroxidase: activation, inhibition and denaturation studies. Appl Biochem Biotechnol 104:81–94

    Article  PubMed  CAS  Google Scholar 

  • Marzouki SM, Limam F, Smaali MI, Ulber R, Marzouki MN (2005) A new thermostable peroxidase from garlic Allium sativum Purification, biochemical properties, immobilization, and use in H2O2 detection in milk. Appl Biochem Biotechnol 127(3):201–214

    Article  PubMed  CAS  Google Scholar 

  • Mohamed SA, El-Badry MO, Drees EA, Fahmy AS (2008) Properties of a cationic peroxidase from Citrus jambhiri cv. Adalia. Appl Biochem Biotechnol 150:127–137

    Article  PubMed  CAS  Google Scholar 

  • Neves VA, Lourenço EJ (1998) Peroxidase from peach fruit: thermal stability. Braz Arch Biol Technol 41(2):179–186

    Article  CAS  Google Scholar 

  • Pandey VP, Dwivedi NU (2011) Purification and characterization of peroxidase from Leucaena leucocephala, a tree legume. J Mol Catal B: Enzym 68:168–173

    Article  CAS  Google Scholar 

  • Rudrappa T, Lakshmanan V, Kaunain R, Singara NM, Neelwarne B (2007) Purification and characterization of an intracellular peroxidase from genetically transformed roots of red beet (Beta vulgaris L.). Food Chem 105:1312–1320

    Article  CAS  Google Scholar 

  • Sadunishvili T, Omiadze N, Kvesitadze G, Rodríguez-López, JN (2002) Thermostability and storage of horseradish and tea plant perxidases.VI International Plant Peroxidases Symposium, Murcia, Spain, pp S6–P3

  • Sakharov IY, Blanco MKV, Sakharova IV (2002) Substrate specificity of African oil palm tree peroxidase. Biochem (Moscow) 67:1043–1047

    Article  CAS  Google Scholar 

  • Silva E, Lourenço EJ, Neves VA (1990) Soluble and bound peroxidase from papaya fruit. Phytochem 29:1051–1056

    Article  Google Scholar 

  • Singh J, Dubey A, Diwakar SK, Rawat SK, Batra N, Joshi A (2010) Biochemical characterization of peroxidases from the fruits of Malluspumilus. Int Res J Biotechnol 1(4):50–58

    Google Scholar 

  • Suzuki T, Honda Y, Mukasa Y, Kim S (2006) Characterization of peroxidase in buckwheat seed. Phytochem 67(3):219–224

    Article  CAS  Google Scholar 

  • Vamos-Vigyazo L (1981) Polyphenol oxidase and peroxidase in fruits and vegetables. CRC Crit Rev Food Sci Nutr 15:49–127

    Google Scholar 

  • Vernwal SK, Yadav RS, Yadav KD (2006) Purification of a peroxidase from Solanum melongena fruit juice. Indian J Biochem Biophys 43:239–243

    PubMed  CAS  Google Scholar 

  • Watanabe L, Nascimento AS, Zamorano LS, Shnyrov VL, Polikarpov I (2007) Purification, crystallization and preliminary X-ray diffraction analysis of royal palm tree (Roystonearegia) peroxidase. Acta Cryst F63:780–783

    CAS  Google Scholar 

  • Zaalishvili TM, Dzhaparidze NS, Sabelashvili DM, Michilashvili RD (1990) The effect of Cu2+, Zn2+cations and biogenic amines on the poly (ADP-ribose) polymerase activities of brain nuclei and on the NAD content in nerve tissues. Biokhimiia. 55(4):695–64

    Google Scholar 

Download references

Acknowledgments

One of us (KP) is highly grateful to D.D.U. Gorakhpur University for providing annual grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagtar Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, J., Kumar, P., Batra, N. et al. Partial purification and characterization of peroxidases from the leaves of Sapindus mukorossi . J. Plant Biochem. Biotechnol. 21, 11–16 (2012). https://doi.org/10.1007/s13562-011-0065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-011-0065-2

Keywords

Navigation