Skip to main content
Log in

Quelle est la place du Doppler rénal dans la prise en charge de l’insuffisance rénale aiguë ?

Renal Doppler ultrasound for the management of acute kidney injury

  • Mise au Point / Update
  • Published:
Médecine Intensive Réanimation

Résumé

L’échographie rénale couplée au Doppler est l’examen de référence pour l’étude des gros vaisseaux artériels et veineux rénaux. Il pourrait également être intéressant comme outil d’évaluation du pronostic et de la perfusion rénale en réanimation. Deux techniques ont été proposées: l’indice de résistance (IR) et le Doppler avec injection de produit de contraste (contrast-enhanced ultrasound, CEUS). L’IR est un paramètre calculé à partir du Doppler rénal comme suit: IR = [pic de vitesse systolique–vitesse minimale diastolique]/pic de vitesse systolique. Ce dernier pourrait s’avérer utile pour le diagnostic précoce de l’insuffisance rénale aiguë ou de sa réversibilité chez des patients de réanimation. Cependant, de nombreux facteurs, physiologiques et pathologiques, peuvent influencer l’IR de façon imparfaitement connue. De plus, les données disponibles suggèrent que l’IR soit un paramètre fonctionnel intégré et non un outil fiable de monitorage du débit sanguin rénal ou un substitut à la ponction-biopsie rénale. Si des études de confirmation sont nécessaires, les potentielles applications cliniques, la faisabilité, la reproductibilité et le faible coût pour un service déjà équipé en échographe justifient probablement que les investigations dans ce domaine soient poursuivies. Le CEUS permet théoriquement d’évaluer plus précisément la microcirculation rénale. Cependant, les résultats préliminaires sont décevants, la fiabilité des mesures limitées et le coût de la technique non négligeable. Des études supplémentaires sont nécessaires pour permettre de mieux appréhender l’intérêt potentiel et les limites de cet outil.

Abstract

Renal Doppler has been proven to be a valuable tool for assessing large arteries and veins of the kidney. An increasing body of evidences suggests that renal Doppler may help to assess perfusion of kidneys in the critically ill. Two techniques have been proposed: renal resistive index (RI) and contrast-enhanced ultrasound (CEUS). The RI is a Doppler-derived parameter that is calculated as follows: RI = [peak systolic shift − minimum diastolic shift]/ peak systolic shift. An increasing body of evidences suggests RI may be of interest for the early diagnosis of acute kidney injury and to evaluate its reversibility. However, numerous physiological and pathological factors have been shown to influence RI and this integrative parameter neither constitutes an alternative to renal biopsy nor provides valuable information on renal blood flow. Although confirmation studies are needed, the potential clinical usefulness, feasibility, reproducibility, and the low cost of the technic probably justify additional investigations in this field. Theoretically, CEUS allows a more precise assessment of renal microcirculation. However, preliminary results in the critically ill are limited and disappointing; reproducibility is limited and the cost of the contrast media is significant. Therefore, although additional studies are expected, CEUS remains mainly a research tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

CEUS:

contrast-enhanced ultrasound, Doppler avec injection de produit de contraste

IP:

indice de pulsatilité intrarénal

IR:

indice de résistance intrarénal

IRA:

insuffisance rénale aiguë

Références

  1. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW (2005) Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 16:3365–70

    Article  PubMed  Google Scholar 

  2. Metnitz PG, Krenn CG, Steltzer H, et al (2002) Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med 30:2051–8

    Article  PubMed  Google Scholar 

  3. Bagshaw SM (2008) Short- and long-term survival after acute kidney injury. Nephrol Dial Transplant 23:2126–8

    Article  PubMed  Google Scholar 

  4. Mehta RL, Kellum JA, Shah SV, et al (2007) Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:R31

    Article  PubMed  PubMed Central  Google Scholar 

  5. Waikar SS, Bonventre JV (2009) Creatinine kinetics and the definition of acute kidney injury. J Am Soc Nephrol 20:672–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prowle JR, Liu YL, Licari E, et al (2011) Oliguria as predictive biomarker of acute kidney injury in critically ill patients. Crit Care 15:R172

    Article  PubMed  PubMed Central  Google Scholar 

  7. Khwaja A (2012) KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract 120:c179–c84

    Article  PubMed  Google Scholar 

  8. Schneider AG, Bellomo R (2013) Urinalysis and pre-renal acute kidney injury: time to move on. Crit Care 17:141

    Article  PubMed  PubMed Central  Google Scholar 

  9. Perinel S, Vincent F, Lautrette A, et al (2015) Transient and persistent acute kidney injury and the risk of hospital mortality in critically ill patients: results of a multicenter cohort study. Crit Care Med 43:e269–e75

    Article  PubMed  Google Scholar 

  10. Pons B, Lautrette A, Oziel J, et al (2013) Diagnostic accuracy of early urinary index changes in differentiating transient from persistent acute kidney injury in critically ill patients: multicenter cohort study. Crit Care 17:R56

    Article  Google Scholar 

  11. Darmon M, Schortgen F, Vargas F, et al (2011) Diagnostic accuracy of Doppler renal resistive index for reversibility of acute kidney injury in critically ill patients. Intensive Care Med 37:68–76

    Article  PubMed  Google Scholar 

  12. Darmon M, Vincent F, Dellamonica J, et al (2011) Diagnostic performance of fractional excretion of urea in the evaluation of critically ill patients with acute kidney injury: a multicenter cohort study. Crit Care 15:R178

    Article  Google Scholar 

  13. Legrand M, Le Cam B, Perbet S, et al (2016) Urine sodium concentration to predict fluid responsiveness in oliguric ICU patients: a prospective multicenter observational study. Crit Care 20:165

    Article  PubMed  PubMed Central  Google Scholar 

  14. Barozzi L, Valentino M, Santoro A, Mancini E, Pavlica P (2007) Renal ultrasonography in critically ill patients. Crit Care Med 35: S198–S205

    Article  PubMed  Google Scholar 

  15. Platt JF (1997) Doppler ultrasound of the kidney. Semin Ultrasound CT MR 18:22–32

    Article  CAS  PubMed  Google Scholar 

  16. Schnell D, Darmon M (2012) Renal Doppler to assess renal perfusion in the critically ill: a reappraisal. Intensive Care Med 38:1751–60

    Article  PubMed  Google Scholar 

  17. Schnell D, Darmon M (2015) Bedside Doppler ultrasound for the assessment of renal perfusion in the ICU: advantages and limitations of the available techniques. Crit Ultrasound J 7:24

    Article  PubMed  Google Scholar 

  18. Schnell D, Deruddre S, Harrois A, et al (2012) Renal resistive index better predicts the occurrence of acute kidney injury than cystatin C. Shock 38:592–7

    Article  CAS  PubMed  Google Scholar 

  19. Lerolle N, Guérot E, Faisy C, Bornstain C, Diehl JL, Fagon JY (2006) Renal failure in septic shock: predictive value of Dopplerbased renal arterial resistive index. Intensive Care Med 32:1553–9

    Article  PubMed  Google Scholar 

  20. Lassau N, Bonastre J, Kind M, et al (2014) Validation of dynamic contrast-enhanced ultrasound in predicting outcomes of antiangiogenic therapy for solid tumors: the French multicenter support for innovative and expensive techniques study. Invest Radiol 49:794–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schneider AG, Hofmann L, Wuerzner G, et al (2012) Renal perfusion evaluation with contrast-enhanced ultrasonography. Nephrol Dial Transplant 27:674–81

    Article  CAS  PubMed  Google Scholar 

  22. Schneider AG, Goodwin MD, Schelleman A, Bailey M, Johnson L, Bellomo R (2014) Contrast-enhanced ultrasonography to evaluate changes in renal cortical microcirculation induced by noradrenaline: a pilot study. Crit Care 18:653

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schneider AG, Goodwin MD, Schelleman A, Bailey M, Johnson L, Bellomo R (2013) Contrast-enhanced ultrasound to evaluate changes in renal cortical perfusion around cardiac surgery: a pilot study. Crit Care 17:R138

    Article  Google Scholar 

  24. Ichai C, Vinsonneau C, Souweine B, et al (2016) Acute kidney injury in the perioperative period and in intensive care units (excluding renal replacement therapies). Ann Intensive Care 6:48

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schnell D, Reynaud M, Venot M, et al (2014) Resistive Index or color-Doppler semi-quantitative evaluation of renal perfusion by inexperienced physicians: results of a pilot study. Minerva Anestesiol 80:1273–81

    CAS  PubMed  Google Scholar 

  26. Knapp R, Plotzeneder A, Frauscher F, et al (1995) Variability of Doppler parameters in the healthy kidney: an anatomic-physiologic correlation. J Ultrasound Med 14:427–9

    CAS  PubMed  Google Scholar 

  27. Lauschke A, Teichgraber UK, Frei U, et al (2006) “Low-dose” dopamine worsens renal perfusion in patients with acute renal failure. Kidney Int 69:1669–74

    Article  CAS  PubMed  Google Scholar 

  28. Platt JF, Rubin JM, Ellis JH, Di Pietro MA (1989) Duplex Doppler US of the kidney: differentiation of obstructive from nonobstructive dilatation. Radiology 171:515–7

    Article  CAS  PubMed  Google Scholar 

  29. Bude RO, Rubin JM (1999) Relationship between the resistive index and vascular compliance and resistance. Radiology 211:411–7

    Article  CAS  PubMed  Google Scholar 

  30. Murphy ME, Tublin ME (2000) Understanding the Doppler RI: impact of renal arterial distensibility on the RI in a hydronephrotic ex vivo rabbit kidney model. J Ultrasound Med 19:303–14

    Article  CAS  PubMed  Google Scholar 

  31. Wan L, Yang N, Hiew CY, et al (2008) An assessment of the accuracy of renal blood flow estimation by Doppler ultrasound. Intensive Care Med 34:1503–10

    Article  PubMed  Google Scholar 

  32. Tublin ME, Tessler FN, Murphy ME (1999) Correlation between renal vascular resistance, pulse pressure, and the resistive index in isolated perfused rabbit kidneys. Radiology 213:258–64

    Article  CAS  PubMed  Google Scholar 

  33. Derchi LE, Leoncini G, Parodi D, et al (2005) Mild renal dysfunction and renal vascular resistance in primary hypertension. Am J Hypertens 18:966–71

    Article  CAS  PubMed  Google Scholar 

  34. Ohta Y, Fujii K, Arima H, et al (2005) Increased renal resistive index in atherosclerosis and diabetic nephropathy assessed by Doppler sonography. J Hypertens 23:1905–11

    Article  CAS  PubMed  Google Scholar 

  35. Terry JD, Rysavy JA, Frick MP (1992) Intrarenal Doppler: characteristics of aging kidneys. J Ultrasound Med 11:647–51

    CAS  PubMed  Google Scholar 

  36. Naesens M, Heylen L, Lerut E, et al (2013) Intrarenal resistive index after renal transplantation. N Engl J Med 369:1797–806

    Article  CAS  PubMed  Google Scholar 

  37. Umgelter A, Reindl W, Franzen M, Lenhardt C, Huber W, Schmid RM (2009) Renal resistive index and renal function before and after paracentesis in patients with hepatorenal syndrome and tense ascites. Intensive Care Med 35:152–6

    Article  CAS  PubMed  Google Scholar 

  38. Kirkpatrick AW, Colistro R, Laupland KB, et al (2007) Renal arterial resistive index response to intraabdominal hypertension in a porcine model. Crit Care Med 35:207–13

    Article  PubMed  Google Scholar 

  39. Duranteau J, Deruddre S, Vigue B, Chemla D (2008) Doppler monitoring of renal hemodynamics: why the best is yet to come. Intensive Care Med 34:1360–1

    Article  PubMed  Google Scholar 

  40. Platt JF (1992) Duplex Doppler evaluation of native kidney dysfunction: obstructive and nonobstructive disease. AJR Am J Roentgenol 158:1035–42

    Article  CAS  PubMed  Google Scholar 

  41. Mostbeck GH, Gössinger HD, Mallek R, Siostrzonek P, Schneider B, Tscholakoff D (1990) Effect of heart rate on Doppler measurements of resistive index in renal arteries. Radiology 175:511–3

    Article  CAS  PubMed  Google Scholar 

  42. Deruddre S, Cheisson G, Mazoit JX, Vicaut E, Benhamou D, Duranteau J (2007) Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med 33:1557–62

    Article  PubMed  Google Scholar 

  43. Corradi F, Brusasco C, Vezzani A, et al (2011) Hemorrhagic shock in polytrauma patients: early detection with renal Doppler resistive index measurements. Radiology 260:112–8

    Article  PubMed  Google Scholar 

  44. Schnell D, Camous L, Guyomarc’h S, et al (2013) Renal perfusion assessment by renal Doppler during fluid challenge in sepsis. Crit Care Med 41:1214–20

    Article  PubMed  Google Scholar 

  45. Moussa MD, Scolletta S, Fagnoul D, et al (2015) Effects of fluid administration on renal perfusion in critically ill patients. Crit Care 19:250

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bossard G, Bourgoin P, Corbeau JJ, Huntzinger J, Beydon L (2011) Early detection of postoperative acute kidney injury by Doppler renal resistive index in cardiac surgery with cardiopulmonary bypass. Br J Anaesth 107:891–8

    Article  CAS  PubMed  Google Scholar 

  47. Izumi M, Sugiura T, Nakamura H, Nagatoya K, Imai E, Hori M (2000) Differential diagnosis of prerenal azotemia from acute tubular necrosis and prediction of recovery by Doppler ultrasound. Am J Kidney Dis 35:713–9

    Article  CAS  PubMed  Google Scholar 

  48. Dewitte A, Coquin J, Meyssignac B, et al (2012) Doppler resistive index to reflect regulation of renal vascular tone during sepsis and acute kidney injury. Crit Care 16:R165

    Article  Google Scholar 

  49. Ninet S, Schnell D, Dewitte A, Zeni F, Meziani F, Darmon M (2015) Doppler-based renal resistive index for prediction of renal dysfunction reversibility: a systematic review and metaanalysis. J Crit Care 30:629–35

    Article  PubMed  Google Scholar 

  50. Dewitte A, Joannes-Boyau O, Sidobre C, et al (2015) Kinetic eGFR and novel AKI biomarkers to predict renal recovery. Clin J Am Soc Nephrol 10:1900–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sever A, Broillet A, Schneider M, et al (2010) Dynamic visualization of lymphatic channels and sentinel lymph nodes using intradermal microbubbles and contrast-enhanced ultrasound in a swine model and patients with breast cancer. J Ultrasound Med 29:1699–704

    PubMed  Google Scholar 

  52. Friedrich-Rust M, Klopffleisch T, Nierhoff J, et al (2013) Contrast-enhanced ultrasound for the differentiation of benign and malignant focal liver lesions: a meta-analysis. Liver Int 33:739–55

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Schnell.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schnell, D., Darmon, M. Quelle est la place du Doppler rénal dans la prise en charge de l’insuffisance rénale aiguë ?. Méd. Intensive Réa 25, 570–577 (2016). https://doi.org/10.1007/s13546-016-1233-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-016-1233-4

Mots clés

Keywords

Navigation