Skip to main content
Log in

De la colonisation à l’infection par des bactéries multirésistantes aux antibiotiques : identification et maîtrise du risque chez les patients hospitalisés en réanimation

From colonisation to infection by multi-antibiotic resistant bacteria: Identifying and managing the risk in patients admitted to the intensive care unit

  • Session Thématique
  • Published:
Réanimation

Résumé

La prise en charge d’infections secondaires à des bactéries multi- ou hautement résistantes aux antibiotiques chez les patients de réanimation est un challenge permanent pour les réanimateurs et représente un problème de santé publique. La colonisation par ces bactéries d’origine exogène ou endogène constitue une étape préalable à la survenue d’infections chez des patients souvent immunodéprimés et bénéficiant de procédures invasives. La survenue d’une infection est dépendante de la relation hôte-pathogène chez chaque individu et est favorisée par le niveau d’abondance relative des bactéries multirésistantes suite à une modification du microbiote intestinal. Les stratégies de prévention des infections associées aux soins en réanimation doivent intégrer parallèlement la maîtrise de la pression de colonisation en réduisant la transmission croisée par l’application des précautions standard et la maîtrise de la pression de sélection par des prescriptions raisonnées et réduites d’antibiotiques. Les techniques de décolonisation peuvent constituer une approche préventive complémentaire intéressante pour les patients de réanimation. Elles doivent être envisagées dans le cadre d’une politique globale associée aux deux mesures précédemment citées.

Abstract

The treatment of infections related to multidrug resistant bacteria is a major issue in the intensive care unit. Colonization due to endogenous or exogenous bacteria represents a first step before infection in critically ill patients, in whom immunosuppression and invasive devices are common. The occurrence of infection depends on the relationship between host and bacteria, and is favored by the quantity of multidrug resistant pathogens after a modification of the gut microbiota. Strategies for the prevention of healthcare-associated infections should include the reduction of colonization pressure, by measures aiming at reducing cross-transmission of multidrug resistant bacteria, and the reduction of selection pressure by reducing antimicrobial treatment. Decolonization may be an interesting complementary method for critically ill patients, and should be used as a part of a global approach including the above-cited strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Pirofski LA, Casadevall A (2002) The meaning of microbial exposure, infection, colonisation, and disease in clinical practice. Lancet Infect Dis 2:628–35

    Article  PubMed  Google Scholar 

  2. Arendrup MC (2010) Epidemiology of invasive candidiasis. Curr Opin Crit Care 16:445–52

    Article  PubMed  Google Scholar 

  3. Bloemendaal AL, Fluit AC, Jansen WM, et al (2009) Acquisition and cross-transmission of Staphylococcus aureus in European intensive care units. Infect Control Hosp Epidemiol 30:117–24

    Article  PubMed  Google Scholar 

  4. Venier AG, Leroyer C, Slekovec C, et al (2014) Risk factors for Pseudomonas aeruginosa acquisition in intensive care units: a prospective multicentre study. J Hosp Infect 88:103–8

    Article  PubMed  Google Scholar 

  5. Wertheim HF, Melles DC, Vos MC, et al (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5:751–62

    Article  PubMed  Google Scholar 

  6. Solberg CO (1965) A study of carriers of Staphylococcus aureus with special regard to quantitative bacterial estimations. Acta Med Scand Suppl 436:1–96

    CAS  PubMed  Google Scholar 

  7. Wertheim HF, Vos MC, Ott A, et al (2004) Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet 364:703–5

    Article  PubMed  Google Scholar 

  8. Levy PY, Ollivier M, Drancourt M, et al (2013) Relation between nasal carriage of Staphylococcus aureus and surgical site infection in orthopaedic surgery: the role of nasal contamination. A systematic literature review and meta-analysis. Orthop Traumatol Surg Res 99:645–51

    Article  PubMed  Google Scholar 

  9. Pujol M, Peña C, Pallares R, et al (1996) Nosocomial Staphylococcus aureus bacteremia among nasal carriers of methicillin-resistant and methicillin-susceptible strains. Am J Med 100:509–16

    Article  CAS  PubMed  Google Scholar 

  10. Kalmeijer MD, van Nieuwland-Bollen E, Bogaers-Hofman D, de Baere GA (2000) Nasal carriage of Staphylococcus aureus is a major risk factor for surgical-site infections in orthopedic surgery. Infect Control Hosp Epidemiol 21:319–23

    Article  CAS  PubMed  Google Scholar 

  11. Datta R, Shah A, Huang SS, et al (2014) High nasal burden of methicillin-resistant Staphylococcus aureus increases risk of invasive disease. J Clin Microbiol 52:312–4

    Article  PubMed Central  PubMed  Google Scholar 

  12. Vollaard EJ, Clasener HA (1994) Colonization resistance. Antimicrob Agents Chemother 38:409–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Hoyen CK, Pultz NJ, Paterson DL, et al (2003) Effect of parenteral antibiotic administration on establishment of intestinal colonization in mice by Klebsiella pneumoniae strains producing extended-spectrum beta-lactamases. Antimicrob Agents Chemother 47:3610–2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Perez F, Pultz MJ, Endimiani A, et al (2011) Effect of antibiotic treatment on establishment and elimination of intestinal colonization by KPC-producing Klebsiella pneumoniae in mice. Antimicrob Agents Chemother 55:2585–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Pultz NJ, Stiefel U, Subramanyan S, et al (2005) Mechanisms by which anaerobic microbiota inhibit the establishment in mice of intestinal colonization by vancomycin-resistant Enterococcus. J Infect Dis 191:949–56

    Article  PubMed  Google Scholar 

  16. Bhalla A, Pultz NJ, Ray AJ, et al (2003) Antianaerobic antibiotic therapy promotes overgrowth of antibiotic-resistant, Gram-negative bacilli and vancomycin-resistant enterococci in the stool of colonized patients. Infect Control Hosp Epidemiol 24:644–9

    Article  PubMed  Google Scholar 

  17. Donskey CJ, Chowdhry TK, Hecker MT, et al (2000) Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N Engl J Med 343:1925–32

    Article  CAS  PubMed  Google Scholar 

  18. Doernberg SB, Winston LG (2012) Risk factors for acquisition of extended-spectrum β-lactamase-producing Escherichia coli in an urban county hospital. Am J Infect Control 40:123–7

    Article  PubMed  Google Scholar 

  19. Papadimitriou-Olivgeris M, Marangos M, Fligou F, et al (2012) Risk factors for KPC-producing Klebsiella pneumoniae enteric colonization upon ICU admission. J Antimicrob Chemother 67:2976–81

    Article  CAS  PubMed  Google Scholar 

  20. Lepelletier D, Cady A, Caroff N, et al (2010) Imipenem-resistant Pseudomonas aeruginosa gastrointestinal carriage among hospitalized patients: risk factors and resistance mechanisms. Diagn Microbiol Infect Dis 66:1–6

    Article  CAS  PubMed  Google Scholar 

  21. Lepelletier D, Caroff N, Riochet D, et al (2006) Role of hospital stay and antibiotic use on Pseudomonas aeruginosa gastrointestinal colonization in hospitalized patients. Eur J Clin Microbiol Infect Dis 25:600–3

    Article  CAS  PubMed  Google Scholar 

  22. Thuong M, Arvaniti K, Ruimy R, et al (2003) Epidemiology of Pseudomonas aeruginosa and risk factors for carriage acquisition in an intensive care unit. J Hosp Infect 53:274–82

    Article  CAS  PubMed  Google Scholar 

  23. Boyer A, Doussau A, Thiébault R, et al (2011) Pseudomonas aeruginosa acquisition on an intensive care unit: relationship between antibiotic selective pressure and patients’ environment. Crit Care 15:R55

    Article  Google Scholar 

  24. Reddy P, Malczynski M, Obias A, et al (2007) Screening for extended-spectrum beta-lactamase-producing Enterobacteriaceae among high-risk patients and rates of subsequent bacteremia. Clin Infect Dis 45:846–52

    Article  CAS  PubMed  Google Scholar 

  25. Goulenok T, Ferroni A, Bille E, et al (2013) Risk factors for developing ESBL Escherichia coli: can clinicians predict infection in patients with prior colonization? J Hosp Infect 84:294–9

    Article  CAS  PubMed  Google Scholar 

  26. Borer A, Saidel-Odes L, Eskira S, et al (2012) Risk factors for developing clinical infection with carbapenem-resistant Klebsiella pneumoniae in hospital patients initially only colonized with carbapenem-resistant K. pneumoniae. Am J Infect Control 40:421–5

    Article  PubMed  Google Scholar 

  27. Satlin MJ, Jenkins SG, Walsh TJ (2014) The global challenge of carbapenem-resistant Enterobacteriaceae in transplant recipients and patients with hematologic malignancies. Clin Infect Dis 58:1274–83

    Article  PubMed  Google Scholar 

  28. Razazi K, Derde LP, Verachten M, et al (2012) Clinical impact and risk factors for colonization with extended-spectrum β-lactamase-producing bacteria in the intensive care unit. Intensive Care Med 38:1769–78

    Article  PubMed  Google Scholar 

  29. Arnan M, Gudiol C, Calatayud L, et al (2011) Risk factors for, and clinical relevance of, faecal extended-spectrum β-lactamase producing Escherichia coli (ESBL-EC) carriage in neutropenic patients with haematological malignancies. Eur J Clin Microbiol Infect Dis 30:355–60

    Article  CAS  PubMed  Google Scholar 

  30. Bert F, Larroque B, Paugam-Burtz C, et al (2012) Pretransplant fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae and infection after liver transplant, France. Emerg Infect Dis 18:908–16

    Article  PubMed Central  PubMed  Google Scholar 

  31. Rodríguez-Baño J, Picón E, Gijón P, et al (2010) Communityonset bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli: risk factors and prognosis. Clin Infect Dis 50:40–8

    Article  PubMed  Google Scholar 

  32. Zahar JR, Lortholary O, Martin C, et al (2009) Addressing the challenge of extended-spectrum beta-lactamases. Curr Opin Investig Drugs 10:172–80

    CAS  PubMed  Google Scholar 

  33. Schechner V, Kotlovsky T, Kazma M, et al (2013) Asymptomatic rectal carriage of blaKPC producing carbapenem-resistant Enterobacteriaceae: who is prone to become clinically infected? Clin Microbiol Infect 19:451–6

    Article  CAS  PubMed  Google Scholar 

  34. Ruppé E, Lixandru B, Cojocaru R, et al (2013) Relative fecal abundance of extended-spectrum-β-lactamase-producing Escherichia coli strains and their occurrence in urinary tract infections in women. Antimicrob Agents Chemother 57:4512–7

    Article  PubMed Central  PubMed  Google Scholar 

  35. Pamer EG (2007) Immune responses to commensal and environmental microbes. Nat Immunol 8:1173–8

    Article  CAS  PubMed  Google Scholar 

  36. Brandl K, Plitas G, Mihu CN, et al (2008) Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455:804–7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Ubeda C, Taur Y, Jenq RR, et al (2010) Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 120:4332–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Taur Y, Xavier JB, Lipuma L, et al (2012) Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 55:905–14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Sullivan A, Edlund C, Nord CE (2001) Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 1:101–14

    Article  CAS  PubMed  Google Scholar 

  40. Michéa-Hamzehpour M, Auckenthaler R, Kunz J, Pechère JC (1988) Effect of a single dose of cefotaxime or ceftriaxone on human faecal flora. A double-blind study. Drugs 35:6–11

    Google Scholar 

  41. Derde LP, Cooper BS, Goossens H, et al (2014) Interventions to reduce colonisation and transmission of antimicrobial-resistant bacteria in intensive care units: an interrupted time series study and cluster randomized trial. Lancet Infect Dis 14:31–9

    Article  PubMed Central  PubMed  Google Scholar 

  42. Climo MW, Wong ES (2013) Daily chlorhexidine bathing and hospital-acquired infection. N Engl J Med 368:2332

    Article  CAS  PubMed  Google Scholar 

  43. Milstone AM, Elward A, Song X, et al (2013) Daily chlorhexidine bathing to reduce bacteraemia in critically ill children: a multicentre, cluster-randomized, crossover trial. Lancet 381:1099–106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. van Rijen M, Bonten M, Wenzel R, Kluytmans J (2008) Mupirocin ointment for preventing Staphylococcus aureus infections in nasal carriers. Cochrane Database Syst Rev:CD006216

    Google Scholar 

  45. Camus C, Sebille V, Legras A, et al (2014) Mupirocin/chlorexidine to prevent methicillin-resistant Staphylococcus aureus infections: post hoc analysis of a placebo-controlled, randomized trial using mupirocin/chlorhexidine and polymyxin/tobramycin for the prevention of acquired infections in intubated patients. Infection 42:493–502

    CAS  PubMed  Google Scholar 

  46. de Smet AM, Kluytmans JA, Cooper BS, et al (2009) Decontamination of the digestive tract and oropharynx in ICU patients. N Engl J Med 360:20–31

    Article  PubMed  Google Scholar 

  47. Oostdijk EA, Kesecioglu J, Schultz MJ, et al (2014) Effects of decontamination of the oropharynx and intestinal tract on antibiotic resistance in ICUs: a randomized clinical trial. JAMA 312:1429–37

    Article  CAS  PubMed  Google Scholar 

  48. Huttner B, Haustein T, Uçkay I, et al (2013) Decolonization of intestinal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae with oral colistin and neomycin: a randomized, double-blind, placebo-controlled trial. J Antimicrob Chemother 68:2375–82

    CAS  PubMed  Google Scholar 

  49. Saidel-Odes L, Polachek H, Peled N, et al (2012) A randomized, double-blind, placebo-controlled trial of selective digestive decontamination using oral gentamicin and oral polymyxin E for eradication of carbapenem-resistant Klebsiella pneumoniae carriage. Infect Control Hosp Epidemiol 33:14–9

    Article  PubMed  Google Scholar 

  50. Camus C, Salomon S, Bouchigny C, et al (2014) Short-term decline in all-cause acquired infections with the routine use of a decontamination regimen combining topical polymyxin, tobramycin, and amphotericin B with mupirocin and chlorhexidine in the ICU: a single-center experience. Crit Care Med 42:1121–30

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -R. Zahar.

Additional information

Cet article correspond à la conférence faite par l’auteur au congrès de la SRLF 2015 dans la session : Infections nosocomiales : les flores au centre du problème.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legeay, C., Bourigault, C., Kouatchet, A.T. et al. De la colonisation à l’infection par des bactéries multirésistantes aux antibiotiques : identification et maîtrise du risque chez les patients hospitalisés en réanimation. Réanimation 24 (Suppl 2), 297–303 (2015). https://doi.org/10.1007/s13546-014-1011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-014-1011-9

Mots clés

Keywords

Navigation