Skip to main content
Log in

Oxymétrie pulsée : contribution au diagnostic et à l’approche hémodynamique en pédiatrie

Pulse oximetry: a tool for diagnosis and hemodynamic assessment in pediatrics

  • Session Thématique en Réanimation Pédiatrique
  • Published:
Réanimation

Résumé

L’oxymétrie de pouls est utilisée en pédiatrie depuis presque 30 ans, pour surveiller la fonction respiratoire et ajuster l’oxygénothérapie. Des avancées technologiques dans le traitement du signal pléthysmographique suggèrent un intérêt potentiel pour l’évaluation hémodynamique. L’indice de perfusion périphérique (IP), qui évalue le contingent pulsatile du signal, est proposé comme indicateur continu et non invasif de la circulation distale. Son utilisation clinique a surtout été développée en néonatalogie, comme aide au diagnostic ou complément à l’exploration de la macrocirculation. Dans la perspective d’un dépistage de cardiopathie, une valeur seuil < 0,70 est évocatrice d’une obstruction critique sur la voie d’éjection ventriculaire gauche. Chez le nouveau-né prématuré, plusieurs observations soulignent sa pertinence pour le diagnostic de bas débit systématique ou de persistance du canal artériel. Les indices dérivés de la variabilité respiratoire de la pléthysmographie de l’oxymètre ont fait principalement l’objet de travaux chez l’enfant, au bloc opératoire, dans la perspective d’évaluer sa volémie et de prédire sa réponse au remplissage vasculaire. Cependant, les résultats sont contradictoires et ne permettent actuellement pas, dans ce contexte, de rationaliser l’administration de fluides avec fiabilité par l’utilisation de ces paramètres. Des études supplémentaires sont nécessaires, particulièrement en réanimation pédiatrique, pour démontrer que l’oxymétrie de pouls peut être un outil hémodynamique d’une validité comparable à celle établie en médecine intensive de l’adulte.

Abstract

Since more than 30 years, pulse oximetry is used in pediatrics to monitor respiratory function and adjust oxygen therapy. Advances in signal processing of plethysmographic curves may confer additional interest for hemodynamic evaluation. The perfusion index (PI) deriving from pulse oxymetry and quantifying the pulsatile component of the signal has been proposed as continuous and noninvasive indicator of distal vessel function. The clinical practice with this index has mainly been developed in neonates. In the context of congenital heart disease screening, a value of < 0.70 may indicate critical left heart obstruction. In premature neonates, observations also suggest that PI may be relevant to diagnose low systemic outpout or persistent ductus arteriosus. Indices derived from respiratory variations of pulse oximeter plethysmograph amplitude have been mainly tested in children before or during surgery, to assess volemia and predict fluid responsiveness in the operating room. However, the currently debated data based on these indices may still not allow their use to guide reliable fluid administration. Further studies are required, particularly in children hospitalized in the intensive care unit, to demonstrate that pulse oximetry is an accurate hemodynamic tool, as clearly established in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Alexander CM, Teller LE, Gross JB (1989) Principles of pulse oximetry: theoretical and practical considerations. Anesth Analg 68:368–76

    Article  CAS  PubMed  Google Scholar 

  2. Jubran A (1999) Pulse oximetry. Crit Care 3:R11–R17

    Article  PubMed Central  PubMed  Google Scholar 

  3. Nijboer JA, Dorlas JC, Mahieu HF (1981) Photoelectric plethysmography: some fundamental aspects of the reflection and transmission method. Clin Phys Physiol Meas 2:205–15

    Article  CAS  PubMed  Google Scholar 

  4. Feissel M (2007) The pulse oxymetry plethysmographic curve: an old signal with a great future? Principles and clinical applications. Réanimation 16:124–131

    Article  Google Scholar 

  5. Michard F, Boussat S, Chemla D, et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–8

    Article  CAS  PubMed  Google Scholar 

  6. Feissel M, Michard F, Mangin I, et al (2001) Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 119:867–73

    Article  CAS  PubMed  Google Scholar 

  7. Feissel M, Michard F, Faller JP, Teboul JL (2004) The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 30:1834–7

    Article  PubMed  Google Scholar 

  8. Vieillard-Baron A, Chergui K, Rabiller A, et al (2004) Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30:1734–9

    PubMed  Google Scholar 

  9. Monnet X, Teboul JL (2013) Assessment of volume responsiveness during mechanical ventilation: recent advances. Crit Care 17:217

    PubMed Central  PubMed  Google Scholar 

  10. Durand P, Chevret L, Essouri S, et al (2008) Respiratory variations in aortic blood flow predict fluid responsiveness in ventilated children. Intensive Care Med 34:888–94

    Article  PubMed  Google Scholar 

  11. Cannesson M, Besnard C, Durand PG, et al (2005) Relation between respiratory variations in pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure in ventilated patients. Crit Care 9:R562–8

    Article  Google Scholar 

  12. Cannesson M, Desebbe O, Rosamel P, et al (2008) Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth 101:200–6

    Article  CAS  PubMed  Google Scholar 

  13. Feissel M, Kalakhy R, Banwarth P, et al (2013) Plethysmographic variation index predicts fluid responsiveness in ventilated patients in the early phase of septic shock in the emergency department: a pilot study. J Crit Care 28:634–9

    Article  PubMed  Google Scholar 

  14. Feissel M, Teboul JL, Merlani P, et al (2007) Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients. Intensive Care Med 33:993–9

    Article  PubMed  Google Scholar 

  15. Monnet X, Guérin L, Jozwiak M, et al (2013) Pleth variability index is a weak predictor of fluid responsiveness in patients receiving norepinephrine. Br J Anaesth 110:207–13

    Article  CAS  PubMed  Google Scholar 

  16. Nilsson L, Johansson A, Kalman S (2003) Macrocirculation is not the sole determinant of respiratory induced variations in the reflection mode photoplethysmographic signal. Physiol Mea 24:925–37

    Article  CAS  Google Scholar 

  17. Monnet X, Lamia B, Teboul JL (2005) Pulse oximeter as a sensor of fluid responsiveness: do we have our finger on the best solution? Crit Care 9:429–30

    Article  PubMed Central  PubMed  Google Scholar 

  18. Zaramella P, Freato F, Quaresima V, et al (2005) Foot pulse oximeter perfusion index correlates with calf muscle perfusion measured by near-infrared spectroscopy in healthy neonates. J Perinatol 25:417–22

    Article  PubMed  Google Scholar 

  19. Granelli Ad, Ostman-Smith I (2007) Noninvasive peripheral perfusion index as a possible tool for screening for critical left heart obstruction. Acta Paediatr 96:1455–9

    Article  PubMed  Google Scholar 

  20. Hakan N, Dilli D, Zenciroglu A, et al (2014) Reference values of perfusion indices in hemodynamically stable newborns during the early neonatal period. Eur J Pediatr 173:597–602

    Article  PubMed  Google Scholar 

  21. Kinoshita M, Hawkes CP, Ryan CA, Dempsey EM (2013) Perfusion index in the very preterm infant. Acta Paediatr 102:e398–401

    Article  Google Scholar 

  22. Cresi F, Pelle E, Calabrese R, et al (2010) Perfusion index variations in clinically and hemodynamically stable preterm newborns in the first week of life. Ital J Pediatr 36:6

    Article  PubMed Central  PubMed  Google Scholar 

  23. Takahashi S, Kakiuchi S, Nanba Y, et al (2010) The perfusion index derived from a pulse oximeter for predicting low superior vena cava flow in very low birth weight infants. J Perinatol 30:265–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Vidal M, Ferragu F, Durand S, et al (2013) Perfusion index and its dynamic changes in preterm neonates with patent ductus arteriosus. Acta Paediatr 102:373–8

    Article  PubMed  Google Scholar 

  25. Evans N (2006) Assessment and support of the preterm circulation. Early Hum Dev 82:803–10

    Article  PubMed  Google Scholar 

  26. Sahni R, Schulze KF, Ohira-Kist K, et al (2010) Interactions among peripheral perfusion, cardiac activity, oxygen saturation, thermal profile and body position in growing low birth weight infants. Acta Paediatr 99:135–9

    CAS  PubMed  Google Scholar 

  27. Mellander M, Sunnegårdh J (2006) Failure to diagnose critical heart malformations in newborns before discharge—an increasing problem? Acta Paediatr 95:407–13

    Article  PubMed  Google Scholar 

  28. de-Wahl Granelli A, Wennergren M, Sandberg K, et al (2009) Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39,821 newborns. BMJ 338:a3037

    Article  Google Scholar 

  29. Ewer AK, Granelli AD, Manzoni P, et al (2013) Pulse oximetry screening for congenital heart defects. Lancet 382:856–7

    Article  PubMed  Google Scholar 

  30. De Felice C, Latini G, Vacca P, et al (2002) The pulse oximeter perfusion index as a predictor for high illness severity in neonates. Eur J Pediatr 161:561–2

    Article  PubMed  Google Scholar 

  31. De Felice C, Del Vecchio A, Criscuolo M, et al (2005) Early postnatal changes in the perfusion index in term newborns with subclinical chorioamnionitis. Arch Dis Child Fetal Neonatal Ed 90:F411–4

    Article  Google Scholar 

  32. De Felice C, Leoni L, Tommasini E, et al (2008) Maternal pulse oximetry perfusion index as a predictor of early adverse respiratory neonatal outcome after elective cesarean delivery. Pediatr Crit Care Med 9:203–8

    Article  PubMed  Google Scholar 

  33. Karadag N, Dilli D, Zenciroglu A, et al (2014) Perfusion index variability in preterm infants treated with two different natural surfactants for respiratory distress syndrome. Am J Perinatol 31:1015–22

    Article  PubMed  Google Scholar 

  34. Khositseth A, Muangyod N, Nuntnarumit P (2013) Perfusion index as a diagnostic tool for patent ductus arteriosus in preterm infants. Neonatology 104:250–4

    Article  PubMed  Google Scholar 

  35. Hiedl S, Schwepcke A, Weber F, et al (2010) Microcirculation in preterm infants: profound effects of patent ductus arteriosus. J Pediatr 156:191–6

    Article  PubMed  Google Scholar 

  36. Lima AP, Beelen P, Bakker J (2002) Use of a peripheral perfusion index derived from the pulse oximetry signal as a noninvasive indicator of perfusion. Crit Care Med 30:1210–3

    Article  PubMed  Google Scholar 

  37. Uemura A, Yagihara M, Miyabe M (2006) Pulse oximeter perfusion index as a predictor for the effect of pediatrie epidnral hloek. Anesthesiology 105:AI354

    Article  Google Scholar 

  38. Xu Z, Zhang J, Shen H, Zheng J (2013) Assessment of pulse oximeter perfusion index in pediatric caudal block under basal ketamine anesthesia. ScientificWorld Journal 19:183493

    Google Scholar 

  39. Latini G, Dipaola L, De Felice C (2012) First day of life reference values for pleth variability index in spontaneously breathing term newborns. Neonatology 101:179–82

    Article  PubMed  Google Scholar 

  40. Renner J, Broch O, Gruenewald M, et al (2011) Non-invasive prediction of fluid responsiveness in infants using pleth variability index. Anaesthesia 66:582–9

    Article  CAS  PubMed  Google Scholar 

  41. Byon HJ, Lim CW, Lee JH, et al (2013) Prediction of fluid responsiveness in mechanically ventilated children undergoing neurosurgery. Br J Anaesth 110:586–91

    Article  PubMed  Google Scholar 

  42. Pereira de Souza Neto E, Grousson S, Duflo F, et al (2011) Predicting fluid responsiveness in mechanically ventilated children under general anaesthesia using dynamic parameters and transthoracic echocardiography. Br J Anaesth 106:856–64

    Article  CAS  PubMed  Google Scholar 

  43. Chandler JR, Cooke E, Petersen C, et al (2012) Pulse oximeter plethysmograph variation and its relationship to the arterial waveform in mechanically ventilated children. J Clin Monit Comput 26:145–51

    Article  CAS  PubMed  Google Scholar 

  44. Chung E, Cannesson M (2012) Using noninvasive dynamic parameters of fluid responsiveness in children: there is still much to learn. J Clin Monit Comput 26:153–5

    Article  PubMed  Google Scholar 

  45. Gan H, Cannesson M, Chandler JR, Ansermino JM (2013) Predicting fluid responsiveness in children: a systematic review. Anesth Analg 117:1380–92

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cambonie.

Additional information

Cet article correspond à la conférence faite par l’auteur au congrès de la SRLF 2015 dans la session : Marqueurs de décompensation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durand, S., Baleine, J., Le Bouhellec, J. et al. Oxymétrie pulsée : contribution au diagnostic et à l’approche hémodynamique en pédiatrie. Réanimation 24 (Suppl 2), 322–331 (2015). https://doi.org/10.1007/s13546-014-1004-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-014-1004-8

Mots clés

Keywords

Navigation