Résumé
En réanimation, la nutrition artificielle fait partie de la prise en charge du patient. Comme pour la ventilation et l’assistance circulatoire, la surveillance nutritionnelle et métabolique est indispensable afin d’améliorer la tolérance et l’efficacité du support nutritionnel. La nutrition entérale (NE) est fréquemment associée à un déficit protéino-énergétique, lui-même responsable d’un plus mauvais pronostic. La détection précoce de ce déficit doit permettre une augmentation des apports protéino-énergétiques, incluant l’éventuelle combinaison NE-nutrition parentérale (NP). Les complications métaboliques de la NP liées à la surnutrition doivent être recherchées. La surveillance glycémique est recommandée dans un but de contrôle glycémique associé à une réduction de la mortalité. En réanimation, les apports en macro- et micronutriments, la dépense énergétique et l’adéquation entre la cible et les apports protéino-énergétiques doivent être étroitement surveillés. Cette surveillance, idéalement à l’aide d’un système informatique, doit être intégrée dans la prise en charge. Une diététicienne dédiée à la réanimation aide à diminuer le déficit énergétique. Poids, taille, albuminémie et transthyrétinémie étant pris en défaut, l’évaluation de la composition corporelle pourrait permettre une évaluation plus précise de l’efficacité de la nutrition artificielle au cours du séjour en réanimation. En limitant le déficit protéino-énergétique et la surnutrition et en optimisant le contrôle glycémique, la surveillance nutritionnelle et métabolique permettrait d’améliorer l’évolution clinique des patients. Les futures études devront déterminer l’impact médico-économique de la surveillance nutritionnelle et métabolique.
Abstract
In the intensive care unit (ICU), nutrition support is a part of patients’ management. As for ventilation and hemodynamics, nutrition and metabolism monitoring is mandatory for improving tolerance and efficacy of nutrition support. Enteral nutrition (EN) is commonly associated with protein-energy deficiency, which is related to poor prognosis. Early detection of deficiency should lead to increase protein and energy delivery, including EN-parenteral nutrition (PN) combination. Overfeeding-related metabolic complications of PN should be screened. Glycaemic monitoring is requested since glycaemic control may result in decreased mortality. In the ICU, macro- and micronutriment intakes, energy expenditure, and matching between protein-energy target and delivery, should be tightly monitored. This monitoring should be computer-based and integrated in patients’ management. An ICU dedicated dietitian may allow to decrease energy deficiency. Since weight, height, serum albumin, and transthyretin could be unsufficient for any definitive diagnosis, assessment of body composition may be useful to allow an accurate assessment of nutrition support efficacy during ICU stay. By limiting protein-energy deficiency and overfeeding and by optimizing glycaemic control, nutrition and metabolism monitoring should improve clinical outcome. Future studies will be helpful to determine the medico-economic impact of nutrition and metabolism monitoring.
Article PDF
Avoid common mistakes on your manuscript.
Références
Hill G (1992) Body composition research: implications for the practice of clinical nutrition. J Parenteral Enteral Nutr 16:197–218
Kreymann KG, Berger MM, Deutz NE, et al (2006) ESPEN Guidelines on Enteral Nutrition: Intensive care. Clin Nutr 25:210–223
Singer P, Berger MM, Van den Berghe G, et al (2009) ESPEN Guidelines on Parenteral Nutrition: intensive care. Clin Nutr 28:387–400
Villet S, Chiolero RL, Bollmann MD, et al (2005) Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr 24:502–509
Dvir D, Cohen J, Singer P (2006) Computerized energy balance and complications in critically ill patients: an observational study. Clin Nutr 25:37–44
Heidegger CP, Berger MM, Graf S, et al (2013) Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial. Lancet 381:385–393
Heyland DK, Stephens KE, Day AG, et al (2011) The success of enteral nutrition and ICU-acquired infections: a multicenter observational study. Clin Nutr 30:148–155
Faisy C, Candela Llerena M, Savalle M, et al (2011) Early ICU energy deficit is a risk factor for Staphylococcus aureus ventilator-associated pneumonia. Chest 140:1254–1260
Alberda C, Gramlich L, Jones N, et al (2009) The relationship between nutritional intake and clinical outcomes in critically ill patients: results of an international multicenter observational study. Intensive Care Medicine 35:1728–1737
Bartlett RH, Dechert RE, Mault JR, et al (1982) Measurement of metabolism in multiple organ failure. Surgery 92:771–779
Rice TW, Wheeler AP, Thompson BT, et al (2012) Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA 307:795–803
Weijs PJ, Stapel SN, de Groot SD, et al (2012) Optimal protein and energy nutrition decreases mortality in mechanically ventilated, critically ill patients: a prospective observational cohort study. JPEN J Parenter Enteral Nutr 36:60–68
Ziegler TR (2009) Parenteral nutrition in the critically ill patient. N Engl J Med 361:1088–1097
Casaer MP, Mesotten D, Hermans G, et al (2011) Early versus late parenteral nutrition in critically ill adults. N Engl J Med 365:506–517
Derde S, Vanhorebeek I, Guiza F, et al (2012) Early parenteral nutrition evokes a phenotype of autophagy deficiency in liver and skeletal muscle of critically ill rabbits. Endocrinology 153:2267–2276
Finfer S, Chittock DR, Su SY, et al (2009) Intensive versus conventional glucose control in critically ill patients. N Engl J Med 360:1283–1297
Van den Berghe G, Wilmer A, Hermans G, et al (2006) Intensive insulin therapy in the medical ICU. N Engl J Med 354:449–461
Petrov MS, Zagainov VE (2007) Influence of enteral versus parenteral nutrition on blood glucose control in acute pancreatitis: a systematic review. Clin Nutr 26:514–523
McClave SA, Martindale RG, Kiraly L (2013) The use of indirect calorimetry in the intensive care unit. Curr Opin Clin Nutr Metab Care 16:202–208
Berger MM, Que YA (2011) Bioinformatics assistance of metabolic and nutrition management in the ICU. Curr Opin Clin Nutr Metab Care 14:202–208
Berger MM, Revelly JP, Wasserfallen JB, et al (2006) Impact of a computerized information system on quality of nutritional support in the ICU. Nutrition 22:221–229
Attof Y, Hachemi M, Cannesson M, et al (2007) [From the creation to the appreciation of a personal digital assistant-based clinical decision-support system for the management of artificial nutrition]. Ann Fr Anesth Reanim 26:1031–1036
van Schijndel RJ, de Groot SD, Driessen RH, et al (2009) Computer-aided support improves early and adequate delivery of nutrients in the ICU. Neth J Med 67:388–393
Soguel L, Revelly JP, Schaller MD, et al (2012) Energy deficit and length of hospital stay can be reduced by a two-step quality improvement of nutrition therapy: the intensive care unit dietitian can make the difference. Crit Care Med 40:412–419
Singer P, Anbar R, Cohen J, et al (2011) The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med 37:601–609
Thibault R, Jaccard S, Navas D, et al (2012) Relevance of parenteral nutrition prescriptions in a French University Hospital: a formative assessment. Nutr Clin Metab 26:65–70
Nardo P, Dupertuis YM, Jetzer J, et al (2008) Clinical relevance of parenteral nutrition prescription and administration in 200 hospitalized patients: a quality control study. Clin Nutr 27:858–864
Juneja R, Roudebush CP, Nasraway SA, et al (2009) Computerized intensive insulin dosing can mitigate hypoglycemia and achieve tight glycemic control when glucose measurement is performed frequently and on time. Crit Care 13:R163
Hoekstra M, Schoorl MA, van der Horst IC, et al (2010) Computer-assisted glucose regulation during rapid step-wise increases of parenteral nutrition in critically ill patients: a proof of concept study. JPEN J Parenter Enteral Nutr 34:549–553
Chase JG, Le Compte AJ, Preiser JC, et al (2011) Physiological modeling, tight glycemic control, and the ICU clinician: what are models and how can they affect practice? Ann Intensive Care 1:11
Lin J, Razak NN, Pretty CG, et al (2011) A physiological Intensive Control Insulin-Nutrition-Glucose (ICING) model validated in critically ill patients. Comput Methods Programs Biomed 102:192–205
Martin CM, Doig GS, Heyland DK, et al (2004) Multicentre, cluster-randomized clinical trial of algorithms for critical-care enteral and parenteral therapy (ACCEPT). CMAJ 170:197–204
Graf S, Pichard C, Thibault R (2013) Conduite à tenir lors d’une diarrhée sous nutrition entérale. Nutr Clin Metab 27:51–53
Reignier J, Mercier E, Le Gouge A, et al (2013) Effect of not monitoring residual gastric volume on risk of ventilator-associated pneumonia in adults receiving mechanical ventilation and early enteral feeding: a randomized controlled trial. JAMA 309:249–256
Grau T, Bonet A, Rubio M, et al (2007) Liver dysfunction associated with artificial nutrition in critically ill patients. Crit Care 11:R10
Thibault R, Pichard C (2011) Évaluation de la composition corporelle en réanimation: avantages et limites. Réanimation 20:287–296
Robert S, Zarowitz BJ, Hyzy R, et al (1993) Bioelectrical impedance assessment of nutritional status in critically ill patients. Am J Clin Nutr 57:840–844
Phang PT, Aeberhardt LE (1996) Effect of nutritional support on routine nutrition assessment parameters and body composition in intensive care unit patients. Can J Surg 39:212–219
Gupta D, Lis CG, Dahlk SL, et al (2004) Bioelectrical impedance phase angle as a prognostic indicator in advanced pancreatic cancer. Br J Nutr 92:957–962
Gupta D, Lammersfeld CA, Burrows JL, et al (2004) Bioelectrical impedance phase angle in clinical practice: implications for prognosis in advanced colorectal cancer. Am J Clin Nutr 80:1634–1638
Ait Hssain A, Pereira B, Souweine B, et al (2013) Évaluation de la composition corporelle en réanimation par tomodensitométrie abdominale avec coupe centrée sur la 3e vertèbre lombaire (TDM-L3): une étude de faisabilité. Réanimation 26:S47
Mourtzakis M, Prado CM, Lieffers JR, et al (2008) A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab 33:997–1006
Baracos VE, Reiman T, Mourtzakis M, et al (2010) Body composition in patients with non-small cell lung cancer: a contemporary view of cancer cachexia with the use of computed tomography image analysis. Am J Clin Nutr 91:1133S–1137S
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Thibault, R., Tamion, F. Surveillance et évaluation de l’efficacité de la nutrition artificielle en réanimation. Réanimation 22, 399–406 (2013). https://doi.org/10.1007/s13546-013-0707-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13546-013-0707-6