Skip to main content
Log in

Mitochondria — key roles in sepsis

Mitochondrie — rôles clés dans le sepsis

  • Enseignement Supérieur en Réanimation Fondamental
  • Published:
Réanimation

Abstract

The pathophysiological mechanisms underpinning the development of, and recovery from, sepsis-induced organ failure require further delineation. Mitochondrial dysfunction may well play a key role. This review will therefore consider mitochondria’s function in normal physiology, evidence linking bioenergetic alterations to organ dysfunction after severe and prolonged inflammation, and potential therapeutic strategies that may be applied.

Résumé

Au cours du sepsis, les mécanismes physiopathologiques sous-tendant le développement et la récupération des dysfonctions d’organe sont encore mal compris. La dysfonction mitochondriale pourrait jouer un rôle majeur. Cette mise au point décrit la physiologie normale des mitochondries, les arguments reliant l’altération bioénergétique mitochondriale aux dysfonctions d’organes après des périodes d’inflammation sévère et prolongée. Enfin, les perspectives thérapeutiques envisageables seront abordées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti C, Brun-Buisson C, Burchardi H, et al (2002) Epidemiology of sepsis and infection in ICU patients from an international multicentre cohort study. Intensive Care Med 28:108–121

    Article  PubMed  Google Scholar 

  2. Angus DC, Linde-Zwirble WT, Lidicker J, et al (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29:1303–1310

    Article  PubMed  CAS  Google Scholar 

  3. Brealey D, Brand M, Hargreaves I, et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223

    Article  PubMed  CAS  Google Scholar 

  4. Duchen MR (2004) Roles of mitochondria in health and disease. Diabetes 53(Suppl 1):S96–S102

    Article  PubMed  CAS  Google Scholar 

  5. Rich P (2003) Chemiosmotic coupling: The cost of living. Nature 421:583

    Article  PubMed  CAS  Google Scholar 

  6. Bradley SJ, Kingwell BA, McConell GK (1999) Nitric oxide synthase inhibition reduces leg glucose uptake but not blood flow during dynamic exercise in humans. Diabetes 48:1815–1821

    Article  PubMed  CAS  Google Scholar 

  7. Evans MJ, Scarpulla RC (1990) NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev 4:1023–1034

    Article  PubMed  CAS  Google Scholar 

  8. Puigserver P, Wu Z, Park CW, et al (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839

    Article  PubMed  CAS  Google Scholar 

  9. Scarpulla RC (2002) Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 286:81–89

    Article  PubMed  CAS  Google Scholar 

  10. Virbasius JV, Scarpulla RC (1994) Activation of the human mitochondrial transcription factor A gene by nuclear respiratory factors: a potential regulatory link between nuclear and mitochondrial gene expression in organelle biogenesis. Proc Natl Acad Sci U S A 91:1309–1313

    Article  PubMed  CAS  Google Scholar 

  11. Akimoto T, Pohnert SC, Li P, et al (2005) Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 280:19587–19593

    Article  PubMed  CAS  Google Scholar 

  12. Czubryt MP, McAnally J, Fishman GI, et al (2003) Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) and mitochondrial function by MEF2 and HDAC5. Proc Natl Acad Sci U S A 100:1711–1716

    Article  PubMed  CAS  Google Scholar 

  13. Schaeffer PJ, Wende AR, Magee CJ, et al (2004) Calcineurin and calcium/calmodulin-dependent protein kinase activate distinct metabolic gene regulatory programs in cardiac muscle. J Biol Chem 279:39593–39603

    Article  PubMed  CAS  Google Scholar 

  14. Zong H, Ren JM, Young LH, et al (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci U S A 99:15983–15987

    Article  PubMed  CAS  Google Scholar 

  15. Gerhart-Hines Z, Rodgers JT, Bare O, et al (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. Embo J 26:1913–1923

    Article  PubMed  CAS  Google Scholar 

  16. Fan M, Rhee J, St-Pierre J, et al (2004) Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: modulation by p38 MAPK. Genes Dev 18:278–289

    Article  PubMed  CAS  Google Scholar 

  17. Leonardsson G, Steel JH, Christian M, et al (2004) Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc Natl Acad Sci U S A 101:8437–8442

    Article  PubMed  CAS  Google Scholar 

  18. Lerin C, Rodgers JT, Kalume DE, et al (2006) GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab 3:429–438

    Article  PubMed  CAS  Google Scholar 

  19. Ventura-Clapier R, Garnier A, Veksler V (2008) Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res 79:208–217

    Article  PubMed  CAS  Google Scholar 

  20. Nisoli E, Clementi E, Paolucci C, et al (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299:896–899

    Article  PubMed  CAS  Google Scholar 

  21. Nisoli E, Carruba MO (2006) Nitric oxide and mitochondrial biogenesis. J Cell Sci 119:2855–2862

    Article  PubMed  CAS  Google Scholar 

  22. Liesa M, Palacin M, Zorzano A (2009) Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89:799–845

    Article  PubMed  CAS  Google Scholar 

  23. Glancy B, Balaban RS (2011) Protein composition and function of red and white skeletal muscle mitochondria. Am J Physiol Cell Physiol 300:C1280–C1290

    Article  PubMed  CAS  Google Scholar 

  24. Benard G, Faustin B, Passerieux E, et al (2006) Physiological diversity of mitochondrial oxidative phosphorylation. Am J Physiol Cell Physiol 291:C1172–C1182

    Article  PubMed  CAS  Google Scholar 

  25. Collins TJ, Berridge MJ, Lipp P, et al (2002) Mitochondria are morphologically and functionally heterogeneous within cells. Embo J 21:1616–1627

    Article  PubMed  CAS  Google Scholar 

  26. Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  27. Gattinoni L, Brazzi L, Pelosi P, et al (1995) A trial of goaloriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 333:1025–1032

    Article  PubMed  CAS  Google Scholar 

  28. Hayes MA, Timmins AC, Yau EH, et al (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330:1717–1722

    Article  PubMed  CAS  Google Scholar 

  29. Fink MP (2002) Bench-to-bedside review: Cytopathic hypoxia. Crit Care 6:491–499

    Article  PubMed  Google Scholar 

  30. Kreymann G, Grosser S, Buggisch P, et al (1993) Oxygen consumption and resting metabolic rate in sepsis, sepsis syndrome, and septic shock. Crit Care Med 21:1012–1019

    Article  PubMed  CAS  Google Scholar 

  31. Boekstegers P, Weidenhofer S, Pilz G, et al (1991) Peripheral oxygen availability within skeletal muscle in sepsis and septic shock: comparison to limited infection and cardiogenic shock. Infection 19:317–323

    Article  PubMed  CAS  Google Scholar 

  32. Rosser DM, Stidwill RP, Jacobson D, et al (1995) Oxygen tension in the bladder epithelium rises in both high and low cardiac output endotoxemic sepsis. J Appl Physiol 79:1878–1882

    PubMed  CAS  Google Scholar 

  33. Singer M (2007) Mitochondrial function in sepsis: acute phase versus multiple organ failure. Crit Care Med 35:S441–S448

    Article  PubMed  CAS  Google Scholar 

  34. Brealey D, Karyampudi S, Jacques TS, et al (2004) Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am J Physiol Regul Integr Comp Physiol 286:R491–R497

    Article  PubMed  CAS  Google Scholar 

  35. Comim CM, Rezin GT, Scaini G, et al (2008) Mitochondrial respiratory chain and creatine kinase activities in rat brain after sepsis induced by cecal ligation and perforation. Mitochondrion 8:313–318

    Article  PubMed  CAS  Google Scholar 

  36. d’Avila JC, Santiago AP, Amancio RT, et al (2008) Sepsis induces brain mitochondrial dysfunction. Crit Care Med 36:1925–1932

    Article  PubMed  Google Scholar 

  37. Gellerich FN, Trumbeckaite S, Hertel K, et al (1999) Impaired energy metabolism in hearts of septic baboons: diminished activities of Complex I and Complex II of the mitochondrial respiratory chain. Shock 11:336–3341

    Article  PubMed  CAS  Google Scholar 

  38. Adrie C, Bachelet M, Vayssier-Taussat M, et al (2001) Mitochondrial membrane potential and apoptosis peripheral blood monocytes in severe human sepsis. Am J Respir Crit Care Med 164:389–395

    PubMed  CAS  Google Scholar 

  39. Callahan LA, Supinski GS (2005) Sepsis induces diaphragm electron transport chain dysfunction and protein depletion. Am J Respir Crit Care Med 172:861–868

    Article  PubMed  Google Scholar 

  40. Carre JE, Orban JC, Re L, et al (2010) Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med 182:745–751

    Article  PubMed  Google Scholar 

  41. Fredriksson K, Hammarqvist F, Strigard K, et al (2006) Derangements in mitochondrial metabolism in intercostal and leg muscle of critically ill patients with sepsis-induced multiple organ failure. Am J Physiol Endocrinol Metab 291:E1044–F1050

    Article  PubMed  CAS  Google Scholar 

  42. Vanhorebeek I, De Vos R, Mesotten D, et al (2005) Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet 365:53–59

    Article  PubMed  CAS  Google Scholar 

  43. Fredriksson K, Flaring U, Guillet C, et al (2009) Muscle mitochondrial activity increases rapidly after an endotoxin challenge in human volunteers. Acta Anaesthesiol Scand 53:299–304

    Article  PubMed  CAS  Google Scholar 

  44. Clementi E, Brown GC, Feelisch M, et al (1998) Persistent inhibition of cell respiration by nitric oxide: crucial role of Snitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci U S A 95:7631–7636

    Article  PubMed  CAS  Google Scholar 

  45. Murray J, Taylor SW, Zhang B, et al (2003) Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry. J Biol Chem 278:37223–37230

    Article  PubMed  CAS  Google Scholar 

  46. Galley HF (2011) Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth 107:57–64

    Article  PubMed  CAS  Google Scholar 

  47. Hotchkiss RS, Song SK, Neil JJ, et al (1991) Sepsis does not impair tricarboxylic acid cycle in the heart. Am J Physiol 260: C50–C57

    PubMed  CAS  Google Scholar 

  48. Vary TC (1996) Sepsis-induced alterations in pyruvate dehydrogenase complex activity in rat skeletal muscle: effects on plasma lactate. Shock 6:89–94

    Article  PubMed  CAS  Google Scholar 

  49. Mason KE, Stofan DA (2008) Endotoxin challenge reduces aconitase activity in myocardial tissue. Arch Biochem Biophys 469:151–156

    Article  PubMed  CAS  Google Scholar 

  50. Calvano SE, Xiao W, Richards DR, et al (2005) A network-based analysis of systemic inflammation in humans. Nature 437:1032–1037

    Article  PubMed  CAS  Google Scholar 

  51. Fredriksson K, Tjader I, Keller P, et al (2008) Dysregulation of mitochondrial dynamics and the muscle transcriptome in ICU patients suffering from sepsis induced multiple organ failure. PLoS One 3:e3686

    Article  PubMed  Google Scholar 

  52. Haden DW, Suliman HB, Carraway MS, et al (2007) Mitochondrial biogenesis restores oxidative metabolism during Staphylococcus aureus sepsis. Am J Respir Crit Care Med 176:768–777

    Article  PubMed  CAS  Google Scholar 

  53. Mofarrahi M, Sigala I, Guo Y, et al (2012) Autophagy and skeletal muscles in sepsis. PLoS One 7:e47265

    Article  PubMed  CAS  Google Scholar 

  54. Ritter C, Andrades ME, Reinke A, et al (2004) Treatment with N-acetylcysteine plus deferoxamine protects rats against oxidative stress and improves survival in sepsis. Crit Care Med 32:342–349

    Article  PubMed  CAS  Google Scholar 

  55. Lowes DA, Thottakam BM, Webster NR, et al (2008) The mitochondria-targeted antioxidant MitoQ protects against organ damage in a lipopolysaccharide-peptidoglycan model of sepsis. Free Radic Biol Med 45:1559–1565

    Article  PubMed  CAS  Google Scholar 

  56. Mao G, Kraus GA, Kim I, et al (2010) A mitochondria-targeted vitamin E derivative decreases hepatic oxidative stress and inhibits fat deposition in mice. J Nutr 140:1425–1431

    Article  PubMed  CAS  Google Scholar 

  57. Supinski GS, Murphy MP, Callahan LA (2009) MitoQ administration prevents endotoxin-induced cardiac dysfunction. Am J Physiol Regul Integr Comp Physiol 297:R1095–R1102

    Article  PubMed  CAS  Google Scholar 

  58. Escames G, Leon J, Macias M, et al (2003) Melatonin counteracts lipopolysaccharide-induced expression and activity of mitochondrial nitric oxide synthase in rats. Faseb J 17:932–934

    PubMed  CAS  Google Scholar 

  59. Mundigler G, Delle-Karth G, Koreny M, et al (2002) Impaired circadian rhythm of melatonin secretion in sedated critically ill patients with severe sepsis. Crit Care Med 30:536–540

    Article  PubMed  CAS  Google Scholar 

  60. Gitto E, Pellegrino S, Gitto P, et al (2009) Oxidative stress of the newborn in the pre- and postnatal period and the clinical utility of melatonin. J Pineal Res 46:128–139

    Article  PubMed  CAS  Google Scholar 

  61. Galley HF (2010) Bench-to-bedside review: Targeting antioxidants to mitochondria in sepsis. Crit Care 14:230

    PubMed  Google Scholar 

  62. Ryter SW, Choi AM (2007) Cytoprotective and anti-inflammatory actions of carbon monoxide in organ injury and sepsis models. Novartis Found Symp 280:165–175; discussion 175–81

    Article  PubMed  CAS  Google Scholar 

  63. Lancel S, Hassoun SM, Favory R, et al (2009) Carbon monoxide rescues mice from lethal sepsis by supporting mitochondrial energetic metabolism and activating mitochondrial biogenesis. J Pharmacol Exp Ther 329:641–648

    Article  PubMed  CAS  Google Scholar 

  64. MacGarvey NC, Suliman HB, Bartz RR, et al (2012) Activation of mitochondrial biogenesis by heme oxygenase-1-mediated NFE2-related factor-2 induction rescues mice from lethal Staphylococcus aureus sepsis. Am J Respir Crit Care Med 185:851–861

    Article  PubMed  CAS  Google Scholar 

  65. Piantadosi CA, Withers CM, Bartz RR, et al (2011) Heme oxygenase-1 couples activation of mitochondrial biogenesis to anti-inflammatory cytokine expression. J Biol Chem 286: 16374–16385

    Article  PubMed  CAS  Google Scholar 

  66. Blackstone E, Morrison M, Roth MB (2005) H2S induces a suspended animation-like state in mice. Science 308:518

    Article  PubMed  CAS  Google Scholar 

  67. Spiller F, Orrico MI, Nascimento DC, et al (2010) Hydrogen sulfide improves neutrophil migration and survival in sepsis via K +ATP channel activation. Am J Respir Crit Care Med 182:360–368

    Article  PubMed  CAS  Google Scholar 

  68. Tokuda K, Kida K, Marutani E, et al (2012) Inhaled hydrogen sulfide prevents endotoxin-induced systemic inflammation and improves survival by altering sulfide metabolism in mice. Antioxid Redox Signal 17:11–21

    Article  PubMed  CAS  Google Scholar 

  69. Thomas RR, Khan SM, Portell FR, et al (2011) Recombinant human mitochondrial transcription factor A stimulates mitochondrial biogenesis and ATP synthesis, improves motor function after MPTP, reduces oxidative stress and increases survival after endotoxin. Mitochondrion 11:108–118

    Article  PubMed  CAS  Google Scholar 

  70. Herridge MS, Tansey CM, Matte A, et al (2011) Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med 364:1293–1304

    Article  PubMed  CAS  Google Scholar 

  71. Khan J, Harrison TB, Rich MM, et al (2006) Early development of critical illness myopathy and neuropathy in patients with severe sepsis. Neurology 67:1421–1425

    Article  PubMed  Google Scholar 

  72. Kress JP, Herridge MS (2012) Medical and economic implications of physical disability of survivorship. Semin Respir Crit Care Med 33:339–347

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Singer.

Additional information

Cet article correspond à la conférence faite par l’auteur au congrès de la SRLF 2013 dans la session: Voies de recherche dans le sepsis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saeed, S., Singer, M. Mitochondria — key roles in sepsis. Réanimation 22 (Suppl 2), 352–358 (2013). https://doi.org/10.1007/s13546-012-0638-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-012-0638-7

Keywords

Mots clés

Navigation