Skip to main content
Log in

Massage cardiaque externe automatisé

Massage cardiaque externe automatisé

  • Enseignement Supérieur en Réanimation
  • Médecin
  • Published:
Réanimation

Résumé

Le massage cardiaque externe reste le paramètre prédominant de toute réanimation cardiopulmonaire. En effet, les recommandations internationales insistent sur la prépondérance de l’hémodynamique par rapport à la ventilation. De plus, de nouvelles indications voient le jour concernant le dernier maillon de la chaîne de survie avec le cœur arrêté, le don d’organes, l’intérêt de la coronarographie et de l’angioplastie primaire très précoce, voire per-massage cardiaque externe. Dans ce cadre, il est difficile de maintenir des compressions thoraciques manuelles efficaces sur une longue durée. De plus, celles-ci sont consommatrices de personnel du fait de l’obligatoire rotation pour limiter la fatigue. Le massage cardiaque automatisé est donc une avancée extrêmement intéressante pour l’arsenal à disposition permettant d’optimiser les options thérapeutiques supplémentaires, à condition d’être mis en place et surveillé par des équipes préalablement bien formées. Cependant, il reste encore des inconnues importantes qu’il faut absolument travailler pour préciser les indications de ce type de massage cardiaque et pour en connaître son efficacité en termes de survie.

Abstract

Chest compression is the important technique used during cardiopulmonary resuscitation. The international guidelines stress on the predominance of hemodynamics with respect to ventilation. Furthermore, new indications are growing regarding the last link of the chain of survival including non-heart-beating donation programs and early percutaneous coronary intervention. Within this framework, manual chest compressions are difficult to be maintained efficiently for a long time and need a turnover of the personnel in order to limit the fatigue. Automated chest compressions allow optimization of the available means to address these additional therapeutic options, on the condition of being installed and supervised by well-trained teams. However, unknown factors persist and should be checked in order to specify the indications of this kind of devices and assess their impact on survival rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Edelson DP, Abella BS, Kramer-Johansen J, et al (2006) Effects of compression depth and preshock pauses predict defibrillation failure during cardiac arrest. Resuscitation 71:137–145

    Article  PubMed  Google Scholar 

  2. Kramer-Johansen J, Myklebust H, Wik L, et al (2006) Quality of out-of-hospital cardiopulmonary resuscitation with real time automated feedback: a prospective interventional study. Resuscitation 71:283–292

    Article  PubMed  Google Scholar 

  3. Zuercher M, Hilwig RW, Ranger-Moore J, et al (2010) Leaning during chest compressions impairs cardiac output and left ventricular myocardial blood flow in piglet cardiac arrest. Crit Care Med 38:1141–1146

    Article  PubMed  Google Scholar 

  4. Sayre MR, Koster RW, Botha M, et al (2010) Part 5: adult basic life support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Adult Basic Life Support Chapter Collaborators. Circulation 122(16 Suppl 2):S298–S324

    Google Scholar 

  5. Leary M, Abella BS (2008) The challenge of CPR quality: improvement in the real world. Resuscitation 77:1–3

    Article  PubMed  Google Scholar 

  6. Wik L (2003) Rediscovering the importance of chest compressions to improve the outcome from cardiac arrest. Resuscitation 58:267–269

    Article  PubMed  Google Scholar 

  7. Berg RA, Sanders AB, Kern KB, et al (2001) Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest. Circulation 104:2465–2470

    Article  PubMed  CAS  Google Scholar 

  8. Kern KB, Hilwig RW, Berg RA, et al (2002) Importance of continuous chest compressions during cardiopulmonary resuscitation: improved outcome during a simulated single lay-rescuer scenario. Circulation 105:645–649

    Article  PubMed  Google Scholar 

  9. Hightower D, Thomas SH, Stone CK, et al (1995) Decay in quality of closed-chest compressions over time. Ann Emerg Med 26:300–303

    Article  PubMed  CAS  Google Scholar 

  10. Jacobs I (2009) Mechanical chest compression devices: will we ever get the evidence? Resuscitation 80:1093–1094

    Article  PubMed  Google Scholar 

  11. Deakin CD, Paul V, Fall E, et al (2007) Ambient oxygen concentrations resulting from use of the Lund University Cardiopulmonary Assist System (LUCAS) device during simulated cardiopulmonary resuscitation. Resuscitation 74:303–309

    Article  PubMed  Google Scholar 

  12. Steen S, Liao Q, Pierre L, et al (2002) Evaluation of LUCAS, a new device for automatic mechanical compression and active decompression resuscitation. Resuscitation 55:285–299

    Article  PubMed  Google Scholar 

  13. Steen S, Sjoberg T, Olsson P, et al (2005) Treatment of outof-hospital cardiac arrest with LUCAS, a new device for automatic mechanical compression and active decompression resuscitation. Resuscitation 67:25–30

    Article  PubMed  Google Scholar 

  14. Bonnemeier H, Olivecrona G, Simonis G, et al (2009) Automated continuous chest compression for in-hospital cardiopulmonary resuscitation of patients with pulseless electrical activity: a report of five cases. Int J Cardiol 136:e39–e50

    Article  PubMed  Google Scholar 

  15. Axelsson C, Nestin J, Svensson L, et al (2006) Clinical consequences of the introduction of mechanical chest compression in the EMS system for treatment of out-of-hospital cardiac arrest: a pilot study. Resuscitation 71:47–55

    Article  PubMed  Google Scholar 

  16. Pytte M, Kramer-Johansen J, Eilevstjønn J, et al (2006) Haemodynamic effects of adrenaline (epinephrine) depend on chest compression quality during cardiopulmonary resuscitation in pigs. Resuscitation 71:369–378

    Article  PubMed  CAS  Google Scholar 

  17. Timerman S, Cardoso LF, Ramires JA, et al (2004) Improved hemodynamic performance with a novel chest compression device during treatment of in-hospital cardiac arrest. Resuscitation 61:273–280

    Article  PubMed  Google Scholar 

  18. Halperin HR, Paradis N, Ornato JP, et al (2004) Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: improved hemodynamics and mechanisms. J Am Coll Cardiol 44:2214–2220

    Article  PubMed  Google Scholar 

  19. Duchateau FX, Gueye P, Curac S, et al (2010) Effect of the Auto-Pulse automated band chest compression device on hemodynamics in out-of-hospital cardiac arrest resuscitation. Intensive Care Med 36:1256–1260

    Article  PubMed  Google Scholar 

  20. Ong ME, Ornato JP, Edwards DP, et al (2006) Use of an automated, load-distributing band chest compression device for outof-hospital cardiac arrest resuscitation. JAMA 295:2629–2637

    Article  PubMed  CAS  Google Scholar 

  21. Hallstrom A, Rea TD, Sayre MR, et al (2006) Manual chest compression vs use of an automated chest compression device during resuscitation following out-of hospital cardiac arrest: a randomized trial. JAMA 295:2620–2628

    Article  PubMed  CAS  Google Scholar 

  22. Paradis NA, Young G, Lemeshow S, et al (2010) In: homogeneity and temporal effects in ASPIRE: an excent from Consent Trial terminated early. Am J Emerg Med 28:391–398

    Article  PubMed  Google Scholar 

  23. Lurie KG. Active compression-decompression CPR: a progress report. Resuscitation 1994;28:115–122

    Article  PubMed  CAS  Google Scholar 

  24. Kramer-Johansen J, Pytte M, Tomlinson AE, et al (2011) Mechanical chest compressions with trapezoidal waveform improve haemodynamics during cardiac arrest. Resuscitation 82:213–218

    Article  PubMed  Google Scholar 

  25. Ong ME, Annathurai A, Leong AS, et al (2010) Cardiopulmonary resuscitation interruptions with use of a load-distributing band device during emergency department cardiac arrest. Ann Emerg Med 56:233–241

    Article  PubMed  Google Scholar 

  26. Hoke RS, Chamberlain D (2004) Skeletal chest injuries secondary to cardiopulmonary resuscitation. Resuscitation 63:327–338

    Article  PubMed  Google Scholar 

  27. Wininger K (2007) Chest compressions: biomechanics and injury. Radiol Technol 78:269–274

    PubMed  Google Scholar 

  28. Buschmann CT, Tsokos M (2009) Frequent and rare complications of resuscitation attempts. Intensive Care Med 35:397–404

    Article  PubMed  Google Scholar 

  29. Smekal D, Johansson J, Huzevka T, et al (2009) No difference in autopsy detected injuries in cardiac arrest patients treated with manual chest compressions compared with mechanical compressions with the LUCAS device: a pilot study. Resuscitation 80:1104–1107

    Article  PubMed  Google Scholar 

  30. Garot P, Lefevre T, Eltchaninoff H, et al (2007) Six-month outcome of emergency percutaneous coronary intervention in resuscitated patients after cardiac arrest complicating ST-elevation myocardial infarction. Circulation 115:1354–1362

    Article  PubMed  Google Scholar 

  31. Morozumi J, Sakurai E, Matsuno N, et al (2009) Successful kidney transplantation from donation after cardiac death using a load-distributing-band chest compression device during long warm ischemic time. Resuscitation 80:278–280

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Plaisance.

Additional information

Cet article correspond à la conférence faite par l’auteur au congrès de la SRLF 2012 dans la session : Controverses dans l’arrêt cardiaque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plaisance, P., Segal, N. & Fulleda, C. Massage cardiaque externe automatisé. Réanimation 21 (Suppl 2), 384–390 (2012). https://doi.org/10.1007/s13546-011-0428-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-011-0428-7

Mots clés

Keywords

Navigation