Skip to main content
Log in

Assistance circulatoire en réanimation

Circulatory support in the intensive care unit

  • Enseignement Supérieur en Réanimation
  • Médecin
  • Published:
Réanimation

Résumé

Les progrès technologiques accomplis depuis la fin des années 1990 ont conduit à l’amélioration de la survie des patients bénéficiant d’une assistance circulatoire à long terme pour insuffisance cardiaque terminale. Cela a suscité un engouement croissant pour toutes les techniques d’assistance circulatoire. Cette revue expose les principaux dispositifs d’assistance disponibles actuellement en France, leurs avantages et inconvénients respectifs et discute la stratégie de prise en charge globale des patients les plus graves, en choc cardiogénique réfractaire au traitement médical optimal. Chez ces patients, l’assistance circulatoire peut se décliner en deux étapes : 1) mise en place rapide d’une assistance dès l’indication posée, en privilégiant les dispositifs d’implantation aisée et les moins coûteux qui doivent permettre d’attendre (quelques semaines) soit la récupération myocardique, soit la mise en place d’une assistance de plus longue durée, soit la transplantation cardiaque. Il s’agit du ballon de contrepulsion intra-aortique, du système Impella® (pompe axiale ventriculaire gauche) ou de l’ECMO (extracorporeal membrane oxygenation); 2) après examen attentif des possibilités de récupération myocardique ou de celles de transplantation, mise en place d’une assistance de type « coeur artificiel » pour une durée plus longue (quelques mois, voire quelques années), autorisant parfois le retour à domicile et une vie sociale de qualité. Ces coeurs artificiels ne s’implantent que dans des centres spécialisés experts, disposant d’un plateau multidisciplinaire suffisant : il s’agit d’une thérapeutique d’exception. Il existe de nombreux modèles de « coeurs artificiels », ceux apportant une assistance monoventriculaire gauche ou biventriculaire, ceux implantables dans le thorax du patient (hormis l’alimentation en énergie) [de type CardioWest®] ou restant à l’extérieur et reliés au coeur par des canules. De nouvelles pompes électromagnétiques axiales ou centrifuges à flux continu, totalement implantables (hormis l’alimentation) et moins bruyantes sont en cours de développement et pourraient constituer une avancée importante dans le traitement de la défaillance monoventriculaire gauche.

Abstract

Since the late 90s, technological advances have led to an improvement in survival rates in patients receiving long-term circulatory support for terminal heart failure. As a result, there has been an increased interest in all circulatory support techniques. This review outlines the main support devices currently available in France, their respective advantages and disadvantages, and discusses the management of patients who are suffering from severe cardiogenic shock unresponsive to optimal medical treatment. For these patients, circulatory support can be split into two stages : (1) The rapid implementation of support, focusing on the easier-to-implant and less expensive devices, which will allow time (several weeks) for one of the following : myocardial recovery, implementation of a longer-term support solution, and a heart transplant. These devices include intraaortic balloon pump, Impella® system (left ventricular axial pump), and extracorporeal membrane oxygenation (EMCO). (2) After careful consideration of the possibility of either myocardial recovery or a heart transplant, implementation of long-term cardiac support (for several months or even a few years) via an “artificial heart” may allow patients to return home and regain a certain amount of normality to their life. This is an exceptional treatment; artificial hearts are only implanted in specialized centers, providing the necessary multidisciplinary expertise. There are a number of artificial heart models available, including those that provide monoventricular (left) or biventricular support, those implanted directly into the chest (excluding the power supply) (e.g., CardioWest®), and others that are external to the patient, which are connected to the heart via cannulae. New, completely implantable (apart from the power supply), less noisy axial or centrifugal continuous flow pumps are being developed, representing a significant advance in the treatment of left ventricular failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Portner PM (2001) Economics of devices. The Annals of thoracic surgery 71:S199–S201; discussion S203–194

    Article  PubMed  CAS  Google Scholar 

  2. Lloyd-Jones DM, Larson MG, Leip EP, et al (2002) Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation 106:3068–3072

    Article  PubMed  Google Scholar 

  3. Rose EA, Moskowitz AJ, Packer M, et al (1999) The REMATCH trial: rationale, design, and end points. Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure. Ann Thorac Surg 67:723–730

    CAS  Google Scholar 

  4. Hanlon-Pena PM, Quaal SJ (2011) Intra-aortic balloon pump timing: review of evidence supporting current practice. Am J Crit Care 323–333; quiz 334

  5. Seguin P, Nesseler N (2010) Assistance circulatoire percutanée par ECMO etchoc septique. In ECLS et ECMO, Guide pratique. Editions Springer-Verlag France, Paris, pp 147–151

    Chapter  Google Scholar 

  6. Baud FJ, Tournoux F, Deye N (2010) Myocardites, intoxications et ECMO. In: ECLS et ECMO, Guide pratique. Editions Springer-Verlag France, Paris, pp 65–99

    Chapter  Google Scholar 

  7. Leprince P, D’Alessandro C, Aubert S, et al (2010) ECMO et transplantation cardiaque. In ECLS et ECMO, Guide pratique. Editions Springer-Verlag France, Paris, pp 137–146

    Chapter  Google Scholar 

  8. Lytzler PY, Lebreton G, Haas-Hubscher C (2010) L’ECMO en postcardiotomie. In: ECLS et ECMO, Guide pratique. Editions Springer-Verlag France, Paris, pp 118–136

    Google Scholar 

  9. Digonnet A, Moya-Plana A, Aubert S, et al (2007) Acute pulmonary embolism: a current surgical approach. Interact Cardiovasc Thorac Surg 6:27–29

    Article  PubMed  Google Scholar 

  10. Kawashima D, Gojo S, Nishimura T, et al (2011) Left ventricular mechanical support with Impella provides more ventricular unloading in heart failure than extracorporeal membrane oxygenation. Asaio J 57:169–176

    Article  PubMed  Google Scholar 

  11. Seyfarth M, Sibbing D, Bauer I, et al (2008) A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol 52:1584–1588

    Article  PubMed  Google Scholar 

  12. Sassard T, Scalabre A, Bonnefoy E, et al (2008) The right axillary artery approach for the Impella Recover LP 5.0 microaxial pump. Ann Thorac Surg 85:1468–1470

    Article  PubMed  Google Scholar 

  13. Mastroianni C, Pozzi M, Niculescu M, et al (2011) Elective Impella Recover LP 5.0 utilization for postcardiotomy lowoutput syndrome after aortic valve replacement. Int J Cardiol [Epub ahead of print]

  14. Sjauw KD, Remmelink M, Baan J Jr, et al (2008) Left ventricular unloading in acute ST-segment elevation myocardial infarction patients is safe and feasible and provides acute and sustained left ventricular recovery. J Am Coll Cardiol 51:1044–1046

    Article  PubMed  Google Scholar 

  15. Copeland JG, Smith RG, Arabia FA, et al (2004) Cardiac replacement with a total artificial heart as a bridge to transplantation. N Engl J Med 351:859–867

    Article  PubMed  CAS  Google Scholar 

  16. Roussel JC, Senage T, Baron O, et al (2009) CardioWest (Jarvik) total artificial heart: a single-center experience with 42 patients. Ann Thorac Surg 87:124–129

    Article  PubMed  Google Scholar 

  17. Flecher E, Joudinaud T (2006) Clinical experiences with the new electromagnetic ventricular assist devices. Ann Cardiol Angeiol (Paris) 55:276–281

    Article  CAS  Google Scholar 

  18. Fumoto H, Horvath DJ, Rao S, et al (2010) In vivo acute performance of the Cleveland Clinic self-regulating, continuous-flow total artificial heart. J Heart Lung Transplant 29:21–26

    Article  PubMed  Google Scholar 

  19. Saito S, Sakaguchi T, Miyagawa S, et al (2011) Biventricular support using implantable continuous-flow ventricular assist devices. J Heart Lung Transplant 30:475–478

    Article  PubMed  Google Scholar 

  20. Strueber M, Meyer AL, Malehsa D, Haverich A (2010) Successful use of the HeartWare HVAD rotary blood pump for biventricular support. J Thorac Cardiovasc Surg 140:936–937

    Article  PubMed  Google Scholar 

  21. Flecher E, Joudinaud T, Grinda JM (2006) Mechanical cardiac assistance and artificial heart: historical perspectives. Ann Chir 131:473–478

    Article  PubMed  CAS  Google Scholar 

  22. Rogers JG, Aaronson KD, Boyle AJ, et al (2010) Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol 55:1826–1834

    Article  PubMed  Google Scholar 

  23. Adamson RM, Stahovich M, Chillcott S, et al (2011) Clinical strategies and outcomes in advanced heart failure patients older than 70 years of age receiving the HeartMate II left ventricular assist device: a community hospital experience. J Am Coll Cardiol 57:2487–2495

    Article  PubMed  Google Scholar 

  24. Farrar DJ, Hill JD, Pennington DG, et al (1997) Preoperative and postoperative comparison of patients with univentricular and biventricular support with the thoratec ventricular assist device as a bridge to cardiac transplantation. J thorac cardiovasc surg 113:202–209

    Article  PubMed  CAS  Google Scholar 

  25. Abdel-Wahab M, Saad M, Kynast J, et al (2010) Comparison of hospital mortality with intra-aortic balloon counterpulsation insertion before versus after primary percutaneous coronary intervention for cardiogenic shock complicating acute myocardial infarction. Am J Cardiol 105:967–971

    Article  PubMed  Google Scholar 

  26. Anderson RD, Ohman EM, Holmes DR Jr, et al (1997) Use of intraaortic balloon counterpulsation in patients presenting with cardiogenic shock: observations from the GUSTO-I study. Global Utilization of Streptokinase and TPA for Occluded Coronary Arteries. J Am Coll Cardiol 30:708–715

    Article  PubMed  CAS  Google Scholar 

  27. Amado LC, Kraitchman DL, Gerber BL, et al (2004) Reduction of “no-reflow” phenomenon by intra-aortic balloon counterpulsation in a randomized magnetic resonance imaging experimental study. J Am Coll Cardiol 43:1291–1298

    Article  PubMed  Google Scholar 

  28. Thiele H, Lauer B, Hambrecht R, et al (2003) Short and long term hemodynamic effet of intra-aortic balloon support in ventricular septal defect complicating acute myocrdial infarction. Am J Cardiol 92:450–454

    Article  PubMed  Google Scholar 

  29. Sauren LD, Reesink KD, Selder JL, et al (2007) The acute effect of intra-aortic balloon counterpulsation during extracorporeal life support: an experimental study. Artif Organs 31:31–38

    Article  PubMed  Google Scholar 

  30. Sauren LD, Accord RE, Hamzeh K, et al (2007) Combined Impella and intra-aortic balloon pump support to improve both ventricular unloading and coronary blood flow for myocardial recovery: an experimental study. Artif Organs 31:839–842

    Article  PubMed  Google Scholar 

  31. Pages ON, Aubert S, Combes A, et al (2009) Paracorporeal pulsatile biventricular assist device versus extracorporal membrane oxygenation-extracorporal life support in adult fulminant myocarditis. J thorac cardiovasc surg 137:194–197

    Article  PubMed  Google Scholar 

  32. Beckmann A, Benk C, Beyersdorf F, et al (2011) Position article for the use of extracorporeal life support in adult patients. Eur J Cardiothorac Surg 40:676–680

    PubMed  Google Scholar 

  33. Chen YS, Lin JW, Yu HY, et al (2008) Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet 372:554–561

    Article  PubMed  Google Scholar 

  34. Lahpor J, Khaghani A, Hetzer R, et al (2010) European results with a continuous-flow ventricular assist device for advanced heart-failure patients. Eur J Cardiothorac Surg 37:357–361

    PubMed  Google Scholar 

  35. Slaughter MS, Rogers JG, Milano CA, et al (2009) Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 361:2241–2251

    Article  PubMed  CAS  Google Scholar 

  36. Slaughter MS, Pagani FD, Rogers JG, et al (2010) Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant 29:S1–S39

    Article  PubMed  Google Scholar 

  37. Kamdar F, Boyle A, Liao K, et al (2009) Effects of centrifugal, axial, and pulsatile left ventricular assist device support on endorgan function in heart failure patients. J Heart Lung Transplant 28:352–359

    Article  PubMed  Google Scholar 

  38. Malehsa D, Meyer AL, Bara C, Struber M (2009) Acquired von Willebrand syndrome after exchange of the HeartMate XVE to the HeartMate II ventricular assist device. Eur J Cardiothorac Surg 35:1091–1093

    Article  PubMed  Google Scholar 

  39. Klovaite J, Gustafsson F, Mortensen SA, et al (2009) Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuous-flow left ventricular assist device (HeartMate II). J Am coll Cardiol 53:2162–2167

    Article  PubMed  CAS  Google Scholar 

  40. Geisen U, Heilmann C, Beyersdorf F, et al (2008) Non-surgical bleeding in patients with ventricular assist devices could be explained by acquired von Willebrand disease. Eur J Cardiothorac Surg 33:679–684

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Squara.

Additional information

Cet article correspond à la conférence faite par l’auteur au congrès de la SRLF 2012 dans la session: Technologies du futur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flécher, E., Ménestret, P. & Squara, P. Assistance circulatoire en réanimation. Réanimation 21 (Suppl 2), 445–454 (2012). https://doi.org/10.1007/s13546-011-0421-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-011-0421-1

Mots clés

Keywords

Navigation