Skip to main content
Log in

Well-posedness and stability of a fractional heat-conductor with fading memory

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We consider a problem which describes the heat diffusion in a complex media with fading memory. The model involves a fractional time derivative of order between zero and one instead of the classical first order derivative. The model takes into account also the effect of a neutral delay. We discuss the existence and uniqueness of a mild solution as well as a classical solution. Then, we prove a Mittag-Leffler stability result. Unlike the integer-order case, we run into considerable difficulties when estimating some problematic terms. It is found that even without the memory term in the heat flux expression, the stability is still of Mittag-Leffler type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R.P., Santos, J.P.C.D., Cuevas, C.: Analytic resolvent operator and existence results for fractional integrodifferential equations. J. Abstr. Differ. Equ. Appl. 2(2), 26–47 (2012)

    MathSciNet  Google Scholar 

  2. Alikhanov, A.A.: Boundary value problems for the diffusion equation of the variable order in differential and difference settings. Appl. Math. Comput. 219(8), 3938–3946 (2012)

    MathSciNet  Google Scholar 

  3. Atanackovic, T.M., Pilipovic, S., Stankovic, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. Wiley, Hoboken (2014)

    Book  Google Scholar 

  4. Chepyzhov, V., Miranville, A.: On trajectory and global attractors for semilinear heat equations with fading memory. Indiana Univ. Math. J. 55, 119–167 (2006)

    Article  MathSciNet  Google Scholar 

  5. Clement, Ph., MacCamy, R.C., Nohel, J.A.: Asymptotic properties of solutions of nonlinear abstract Volterra equations. J. Integr. Equ. 3(3), 185–216 (1981)

    MathSciNet  Google Scholar 

  6. Clement, Ph., Nohel, J.A.: Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels. SIAM J. Math. Anal. 12(4), 514–535 (1981)

    Article  MathSciNet  Google Scholar 

  7. Coleman, B.D.: Thermodynamics of materials with memory. Arch. Ration. Mech. Anal. 17, 1–46 (1964)

    Article  MathSciNet  Google Scholar 

  8. Coleman, B.D., Gurtin, M.E.: Equipresence and constitutive equations for rigid heat conductors. Z. Angew. Math. Phys. 18, 199–208 (1967)

    Article  MathSciNet  Google Scholar 

  9. Da Prato, G., Iannelli, M.: Existence and regularity for a class of integrodifferential equations of parabolic type. J. Math. Anal. Appl. 112(1), 36–55 (1985)

    Article  MathSciNet  Google Scholar 

  10. Da Prato, G., Lunardi, A.: Solvability on the real line of a class of linear Volterra integrodifferential equations of parabolic type. Ann. Mat. Pura Appl. 4(150), 67–117 (1988)

    Article  Google Scholar 

  11. Dos Santos, J.P.C.: Fractional resolvent operator with \(\alpha \in (0,1)\) and applications. Fract. Differ. Calc. 9(2), 187–208 (2019)

    MathSciNet  Google Scholar 

  12. Fang, Z.B., Qiu, L.R.: Global existence and uniform energy decay rates for the semilinear parabolic equation with a memory term and mixed boundary condition. Abstr. Appl. Anal. 2013, Article ID 532935, 12 pages (2013)

  13. Golden, J.M., Graham, G.A.C.: Boundary Value Problems in Linear Viscoelasticity. Springer, Berlin (1988)

    Book  Google Scholar 

  14. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.Y.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014), 2nd ed. (2020). https://doi.org/10.1007/978-3-662-61550-8

  15. Greenenko, A.A., Chechkin, A.V., Shul’ga, N.F.: Anomalous diffusion and Lévy flights in channeling. Phys. Lett. A 324(1), 82–85 (2004)

    Article  MathSciNet  Google Scholar 

  16. Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31, 113–126 (1968)

    Article  MathSciNet  Google Scholar 

  17. Jleli, M., Kirane, M., Samet, B.: Lyapunov-type inequalities for fractional partial differential equations. Appl. Math. Lett. 66, 30–39 (2017). https://doi.org/10.1016/j.aml.2016.10.013

    Article  MathSciNet  Google Scholar 

  18. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

    Book  Google Scholar 

  19. Kirane, M., Ahmad, B., Alsaedi, A., Al-Yami, M.: Non-existence of global solutions to a system of fractional diffusion equations. Acta Appl. Math. 133(1), 235–248 (2014)

    Article  MathSciNet  Google Scholar 

  20. Li, C.J., Qiu, L.R., Fang, Z.B.: General decay rate estimates for a semilinear parabolic equation with memory term and mixed boundary condition. Bound. Value Probl. 197 (2014)

  21. Londen, S.O., Nohel, J.A.: A nonlinear Volterra integrodifferential equation occurring in heat flow. J. Integr. Equ. 6(1), 11–50 (1984)

    Google Scholar 

  22. Lunardi, A.: Laplace transform methods in integrodifferential equations. J. Integr. Equ. 10, 185–211 (1985)

    Google Scholar 

  23. Lunardi, A.: On the linear heat equation with fading memory. SIAM J. Math. Anal. 21(5), 1213–1224 (1990)

    Article  MathSciNet  Google Scholar 

  24. MacCamy, R.C.: An integro-differential equation with application in heat flow. Quart. Appl. Math. 35(1), 1–19 (1977)

    Article  MathSciNet  Google Scholar 

  25. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Redding (2006)

    Google Scholar 

  26. Munteanu, I.: Stabilization of semilinear heat equations, with fading memory, by boundary feedbacks. J. Differ. Equ. 259(2), 454–472 (2015)

    Article  MathSciNet  Google Scholar 

  27. Nachlinger, R.R., Nunziato, J.W.: Stability of uniform temperature fields in linear heat conductors with memory. Int. J. Eng. Sci. 14(8), 693–701 (1976)

    Article  MathSciNet  Google Scholar 

  28. Nunziato, J.M.: On heat conduction in materials with memory. Quart. Appl. Math. 29, 187–204 (1971)

    Article  MathSciNet  Google Scholar 

  29. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  30. Prüss, J.: Evolutionary Integral Equations and Applications. Birkhäuser, Basel (1993)

    Book  Google Scholar 

  31. Szymanski, J., Weiss, M.: Elucidating the origin of anomalous diffusion in crowded fluids. Phys. Rev. Lett. 103(3), 038102 (2009)

    Article  Google Scholar 

  32. Tatar, N.-E., Kerbal, S., Al-Ghassani, A.: Stability of solutions for a heat equation with memory. Electron. J. Differ. Equ. 2017(303), 1–16 (2017)

    MathSciNet  Google Scholar 

  33. Yan, L., Chen, Y.Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59(5), 1810–1821 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from Sultan Qaboos University through internal grant no. IG/SCI/MATH/20/01. The second author is very grateful for the financial support and the facilities provided by King Fahd University of Petroleum and Minerals, Interdisciplinary Research Center for Intelligent Manufacturing & Robotics through project number Sb201014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebti Kerbal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerbal, S., Tatar, Ne. & Al-Salti, N. Well-posedness and stability of a fractional heat-conductor with fading memory. Fract Calc Appl Anal (2024). https://doi.org/10.1007/s13540-024-00291-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13540-024-00291-3

Keywords

Mathematics Subject Classification

Navigation