Skip to main content
Log in

Existence of positive solutions for fractional delayed evolution equations of order \(\gamma \in (1,2)\) via measure of non-compactness

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The purpose of this paper is to consider the fractional delayed evolution equation of order \(\gamma \in (1,2)\) in ordered Banach space. In the absence of assumptions about the compactness of cosine families or related sine families, the existence results of positive solutions are studied by using some fixed point theorems and monotone iterative method under the conditions that nonlinear function satisfies the non-compactness measure conditions and some appropriate growth conditions or order conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendt, W., Batty, C., Hieber, M., Neubrander, F.: Vector-valued Laplace Transforms and Cauchy Problems. Birkhäuser Verlag, Basel (2011)

    Google Scholar 

  2. Bai, Z., Lü, H.: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311(2), 495–505 (2005)

    MathSciNet  Google Scholar 

  3. Banas, J., Goebel, K.: Measure of Noncompactness in Banach Spaces. Dekker, New York (1980)

    Google Scholar 

  4. Bajlekova, E.: Fractional Evolution Equations in Banach Spaces. Ph.D. Thesis, Department of Mathematics, Eindhoven University of Technology (2001)

  5. Bazhlekova, E.: The abstract Cauchy problem for the fractional evolution equation. Fract. Calc. Appl. Anal. 1(3), 255–270 (1998)

    MathSciNet  Google Scholar 

  6. Bazhlekova, E., Bazhlekov, I.: Subordination approach to multi-term time-fractional diffusion-wave equations. J. Comput. Appl. Math. 339, 179–192 (2018)

    MathSciNet  Google Scholar 

  7. Chen, X., Cheng, L.: On countable determination of the Kuratowski measure of noncompactness. J. Math. Anal. Appl. 504(1), 125370 (2021)

    MathSciNet  Google Scholar 

  8. Chen, P., Zhang, X., Li, Y.: Study on fractional non-autonomous evolution equations with delay. Comput. Math. Appl. 73(5), 294–803 (2017)

    MathSciNet  Google Scholar 

  9. Chen, P., Li, Y., Chen, Q., Feng, B.: On the initial value problem of fractional evolution equations with noncompact semigroup. Comput. Math. Appl. 67(5), 1108–1115 (2014)

    MathSciNet  Google Scholar 

  10. Chen, P., Zhang, X., Li, Y.: Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators. Fract. Calc. Appl. Anal. 23(1), 268–291 (2020). https://doi.org/10.1515/fca-2020-0011

    Article  MathSciNet  Google Scholar 

  11. Deimling, K.: Nonlinear Functional Analysis. Springer-Verlag, New York (1985)

    Google Scholar 

  12. Dineshkumar, C., Udhayakumar, R.: Results on approximate controllability of fractional stochastic Sobolev-type Volterra-Fredholm integro-differential equation of order \(1<r<2\). Math. Methods Appl. Sci. 45, 6691–6704 (2022)

    MathSciNet  Google Scholar 

  13. Guo, D., Sun, J.: Ordinary Differential Equations in Abstract Spaces. Jinan, Shandong Science and Technology (1989) (in Chinese)

  14. Gou, H., Li, Y.: The method of lower and upper solutions for impulsive fractional evolution equations. Ann. Funct. Anal. 11, 350–369 (2020)

    MathSciNet  Google Scholar 

  15. Heinz, H.: On the behaviour of measure of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal. 7(12), 1351–1371 (1983)

    MathSciNet  Google Scholar 

  16. Jiang, Y.: Topological properties of solution sets for Riemann-Liouville fractional nonlocal delay control systems with noncompact semigroups and applications to approximate controllability. Bull. Sci. Math. 180, 103195 (2022)

    MathSciNet  Google Scholar 

  17. Kian, Y., Yamamoto, M.: On existence and uniqueness of solutions for semilinear fractional wave equations. Fract. Calc. Appl. Anal. 20(1), 117–138 (2017). https://doi.org/10.1515/fca-2017-0006

    Article  MathSciNet  Google Scholar 

  18. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier (2006)

  19. Li, K., Peng, J., Jia, J.: Cauchy problems for fractional differential equations with Riemann-Liouville fractional derivatives. J. Funct. Anal. 263(2), 476–510 (2012)

    MathSciNet  Google Scholar 

  20. Li, Q., Liu, L., Wei, M.: Existence of positive \(S\)-asymptotically periodic solutions of the fractional evolution equations in ordered Banach spaces. Nonlinear Anal. Model. Control 26(5), 928–946 (2021)

    MathSciNet  Google Scholar 

  21. Li, Q., Wang, G., Wei, M.: Monotone iterative technique for time-space fractional diffusion equations involving delay. J. Inequal. Appl. 26(1), 241–258 (2021)

    MathSciNet  Google Scholar 

  22. Li, Q., Wei, M.: Monotone iterative technique for \(S\)-asymptotically periodic problem of fractional evolution equation with finite delay in ordered Banach space. J. Math. Inequal. 15(2), 521–546 (2021)

    MathSciNet  Google Scholar 

  23. Li, Y.: Regularity of mild Solutions for fractional abstract Cauchy problem with order \(\alpha \in (1,2)\). Z. Angew. Math. Phys. 66(6), 3283–3298 (2015)

    MathSciNet  Google Scholar 

  24. Li, Y., Sun, H., Feng, Z.: Fractional abstract Cauchy problem with order \(\alpha \in (1,2)\). Dyn. Partial Differ. Equ. 13(2), 155–177 (2016)

    MathSciNet  Google Scholar 

  25. Li, Y., Wang, Y.: The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay. J. Differential Equations 266(6), 3514–3558 (2019)

    MathSciNet  Google Scholar 

  26. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity, 2nd edn. Imperial College Press, London (2022)

    Google Scholar 

  27. Mohan Raja, M., Vijayakumar, V., Udhayakumar, R.: Results on the existence and controllability of fractional integro-differential system of order \(1<r<2\) via measure of noncompactness. Chaos, Solitons and Fractals 139, 110299 (2020)

    MathSciNet  Google Scholar 

  28. Mohan Raja, M., Vijayakumar, V.: New results concerning to approximate controllability of fractional integro-differential evolution equations of order \(1<r<2\). Numer. Methods Partial Differential Equations 38, 509–254 (2022)

    MathSciNet  Google Scholar 

  29. Muthukumar, P., Thiagu, K.: Existence of solutions and approximate controllability of fractional nonlocal neutral impulsive stochastic differential equations of order \(1<q<2\) with infinite delay and Poisson jumps. J. Dyn. Control Syst. 23, 213–235 (2017)

    MathSciNet  Google Scholar 

  30. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    Google Scholar 

  31. Sabatier, J., Agrawal, O., Tenreiro, J.: Advances in Fractional Calculus. Springer, Dordrecht (2007)

    Google Scholar 

  32. Shu, X., Wang, Q.: The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order \(1 < \alpha < 2\). Comput. Math. Appl. 64(6), 2100–2110 (2012)

    MathSciNet  Google Scholar 

  33. Shu, X., Xu, F., Shi, Y.: \(S\)-asymptotically \(\omega \)-positive periodic solutions for a class of neutral fractional differential equations. Appl. Math. Comput. 270, 768–776 (2015)

    MathSciNet  Google Scholar 

  34. Sin, C., Rim, J., Choe, H.: Initial-boundary value problems for multi-term time-fractional wave equations. Fract. Calc. Appl. Anal. 25(5), 1994–2019 (2022). https://doi.org/10.1007/s13540-022-00080-w

    Article  MathSciNet  Google Scholar 

  35. Sun, J., Zhang, X.: A fixed point theorem for convex-power condensing operators and its applications to abstract semilinear evolution equations. Acta Math. Sinica (Chin. Ser.) 48, 439–446 (2005)

    MathSciNet  Google Scholar 

  36. Tarasov, V.: Fractional Dynamics. Springer Verlag, Berlin (2010)

    Google Scholar 

  37. Travis, C., Webb, G.: Cosine families and abstractnonlinear second order differential equations. Acta Math. Hungar. 32(1), 75–96 (1978)

    MathSciNet  Google Scholar 

  38. Tuan, H., Thai, H., Garrappa, R.: An analysis of solutions to fractional neutral differential equations with delay. Commun. Nonlinear Sci. Numer. Simulat. 100, 105854 (2021)

    MathSciNet  Google Scholar 

  39. Van Bockstal, K., Zaky, M., Hendy, A.: On the existence and uniqueness of solutions to a nonlinear variable order time-fractional reaction-diffusion equation with delay. Commun. Nonlinear Sci. Numer. Simul. 115, 106755 (2022)

    MathSciNet  Google Scholar 

  40. Wang, J., Zhou, Y.: Existence of mild solutions for fractional delay evolution systems. Appl. Math. Comput. 218(2), 357–367 (2011)

    MathSciNet  Google Scholar 

  41. Yang, H.: Approximate controllability of Sobolev type fractional evolution equations of order \(\alpha \in (1,2)\) via resolvent operators. J. Appl. Anal. Comput. 11(6), 2981–3000 (2021)

    MathSciNet  Google Scholar 

  42. Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328(2), 1075–1081 (2007)

    MathSciNet  Google Scholar 

  43. Zhang, Y., Wei, T., Yan, X.: Recovery of advection coefficient and fractional order in a time-fractional reaction-advection-diffusion-wave equation. J. Comput. Appl. Math. 411, 114254 (2022)

    MathSciNet  Google Scholar 

  44. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Google Scholar 

  45. Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Elsevier, Academic Press (2016)

    Google Scholar 

  46. Zhou, Y., He, J.: New results on controllability of fractional evolution systems with order \(\alpha \in (1,2)\). Evol. Eq. Control Theory 10(3), 491–509 (2021)

    MathSciNet  Google Scholar 

  47. Zhu, B., Han, B., Yu, W.: Existence of mild molutions for a class of fractional non-autonomous evolution equations with delay. Acta Math. Appl. E. S. 36(4), 870–878 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors are most grateful to the editor and anonymous referees for the careful reading of the manuscript and valuable comments that helped in significantly improving an earlier version of this paper.

Funding

Q. Li is partially supported by China Postdoctoral Science Foundation (Grant No. 2020M682140), NSF of Shanxi, China (Grant No. 201901D211399).

Author information

Authors and Affiliations

Authors

Contributions

Q. Li completed the proof of the main results and the writing of the first draft. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qiang Li.

Ethics declarations

Competing interests

Q. Li, M. Wei and J. Zhao declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zhao, J. & Wei, M. Existence of positive solutions for fractional delayed evolution equations of order \(\gamma \in (1,2)\) via measure of non-compactness. Fract Calc Appl Anal 27, 896–918 (2024). https://doi.org/10.1007/s13540-024-00248-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-024-00248-6

Keywords

Mathematics Subject Classification

Navigation