Skip to main content
Log in

Analytical and dimensional properties of fractal interpolation functions on the Sierpiński gasket

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this article, we construct the fractal interpolation functions (FIFs) on the Sierpiński gasket (SG) by taking data set at the nth level. We discuss the oscillation space, \(\mathcal {L}_q\) space and some other function spaces on SG, and determine some conditions under which, this FIF belongs to these spaces. We obtain the fractal dimension of the graph of the FIF and the Hausdorff dimension of the invariant measure supported on the graph of the FIF. We also prove that this FIF has finite energy. After that, we discuss the restrictions of the FIF on the bottom line segment of SG and prove that the restriction is again an FIF on the bottom line. We estimate the fractal dimension of the graph of the Riemann-Liouville fractional integral of the restrictions of the FIF on the bottom line segment of SG. Lastly, we prove that the Hausdorff and box-counting dimension of the graph of the restriction of any harmonic function on the bottom line segment of SG are 1 and for the Riemann- Liouville fractional integral of this restriction function, these dimensions are also 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Agrawal, V., Som, T.: \(\cal{L} ^p\)-approximation using fractal functions on the Sierpiński Gasket. Results Math. 77(2), 1–17 (2021)

    Google Scholar 

  2. Bandt, C., Barnsley, M., Hegland, M., Vince, A.: Old wine in fractal bottles I: Orthogonal expansions on self-referential spaces via fractal transformations. Chaos Solitons Fractals 91, 478–489 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2, 303–329 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barnsley, M.F.: Fractal Everywhere. Academic Press, San Diego (1988)

    MATH  Google Scholar 

  5. Celik, D., Kocak, S., Özdemir, Y.: Fractal interpolation on the Sierpiński gasket. J. Math. Anal. Appl. 337(1), 343–347 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chandra, S., Abbas, S.: The calculus of bivariate fractal interpolation surfaces. Fractals 29(3), 2150066 (2021)

    Article  MATH  Google Scholar 

  7. Chandra, S., Abbas, S.: Analysis of fractal dimension of mixed Riemann-Liouville integral. Numer. Algorithms 91(3), 1021–1046 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chandra, S., Abbas, S.: Box dimension of mixed Katugampola fractional integral of two-dimensional continuous functions. Fract. Calc. Appl. Anal. 25(3), 1022–1036 (2022). https://doi.org/10.1007/s13540-022-00050-2

    Article  MathSciNet  MATH  Google Scholar 

  9. Dalrymple, K., Strichartz, R.S., Vinson, J.P.: Fractal differential equations on the Sierpinski gasket. J. Fourier Anal. Appl. 5(2), 203–284 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deliu, A., Jawerth, B.: Geometrical dimension versus smoothness. Constr. Approx. 8, 211–222 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Demir, B., Dzhafarov, V., Koçak, Ş, Üreyen, M.: Derivatives of the restrictions of harmonic functions on the Sierpinski gasket to segments. J. Math. Anal. Appl. 333(2), 817–822 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications. John Wiley Sons Inc., New York (1999)

    MATH  Google Scholar 

  13. Falconer, K.J., Fraser, J.M.: The horizon problem for prevalent surfaces. Mathematical Proc. Cambridge Philos. Soc. 151(2), 355–372 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hutchinson, J.E.: Fractals and self similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kigami, J.: Analysis on Fractals. Cambridge University Press, Cambridge, UK (2001)

    Book  MATH  Google Scholar 

  16. Liang, Y.S.: Box dimensions of Riemann-Liouville fractional integrals of continuous functions of bounded variation. Nonlinear Anal. 72(11), 4304–4306 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liang, Y.S.: Fractal dimension of Riemann-Liouville fractional integral of 1-dimensional continuous functions. Fract. Calc. Appl. Anal. 21(6), 1651–1658 (2018). https://doi.org/10.1515/fca-2018-0087

    Article  MathSciNet  MATH  Google Scholar 

  18. Liang, Y.S., Su, W.Y.: Fractal dimensions of fractional integral of continuous functions. Acta Math. Sin. 32, 1494–1508 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liang, Y. S.: Estimation of fractal dimension of fractional calculus of the Hölder continuous functions. Fractals, 28(07), 2050123 (6 pages) (2020)

  20. Ri, S.G., Ruan, H.J.: Some properties of fractal interpolation functions on Sierpinski gasket. J. Math. Anal. Appl. 380(1), 313–322 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ruan, H.J., Su, W.Y., Yao, K.: Box dimension and fractional integral of linear fractal interpolation functions. J. Approx. Theory 161(1), 187–197 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ruan, H.J.: Fractal interpolation functions on post critically finite self-similar sets. Fractals 18(1), 119–125 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sahu, A., Priyadarshi, A.: On the box-counting dimension of graphs of harmonic functions on the Sierpiński gasket. J. Math. Anal. Appl. 487(2), 124036 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Switzerland (1993)

    MATH  Google Scholar 

  25. Strichartz, R.S.: Differential Equations on Fractals. Princeton University Press, Princeton, NJ (2006)

    Book  MATH  Google Scholar 

  26. Tatom, F.B.: The relationship between fractional calculus and fractals. Fractals 03(01), 217–229 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Verma, S., Sahu, A.: Bounded variation on the Sierpiński gasket. Fractals 30(07), 1–12 (2022)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The first author thanks MHRD, India for financial support in the form of a Senior Research Fellowship at the Indian Institute of Technology Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuj Verma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, M., Priyadarshi, A. & Verma, S. Analytical and dimensional properties of fractal interpolation functions on the Sierpiński gasket. Fract Calc Appl Anal 26, 1294–1325 (2023). https://doi.org/10.1007/s13540-023-00148-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-023-00148-1

Keywords

Mathematics Subject Classification

Navigation