Skip to main content
Log in

A novel approach to stability analysis of a wide class of irrational linear systems

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This paper presents a general methodology for finding stability equivalence regions, of a wide class of linear time-invariant systems with irrational transfer functions, inside a parametric space. The proposed methodology can be applied to distributed-parameter, time-delay and fractional systems. Unlike rational transfer functions which have only a finite number of poles, irrational transfer functions may generally possess an infinite number of poles, branch points and even essential singularities. Due to this, stability of such systems is more difficult to analyze. Two variants of the new methodology are presented. The first one analyzes stability equivalence along a curve in the parametric space, starting from a given parametric point. The second one finds the maximal stability equivalence region in the parametric space around a given parametric point. Both methodologies are based on iterative application of Rouché’s theorem. They are illustrated on several examples, including heat diffusion equation and generalized time-fractional telegrapher’s equation, which exhibit special functions such as \(\sinh \) and \(\cosh \) of \(\sqrt{s}\), the Laplace variable of order 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Austria)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Antoulas, A.: Approximation of Large-Scale Dynamical Systems. Society for Industrial and Applied Mathematics, Philadephia (2005)

  2. Atwell, J., King, B.: Reduced order controllers for spatially distributed systems via proper orthogonal decomposition. SIAM Journal on Scientific Computing 26, 128–151 (2004)

    Article  MATH  Google Scholar 

  3. Bairamov, F., Safronov, M.: The stability of systems with distributed parameters and lumped forces. Journal of Applied Mathematics and Mechanics 66, 341–345 (2002)

    Article  MATH  Google Scholar 

  4. Balas, M.: Suboptimality and stability of linear distributed-parameter systems with finite-dimensional controllers. Journal of Optimization Theory and Applications 45, 1–19 (1985)

    Article  MATH  Google Scholar 

  5. Balas, M.: Finite-dimensional controllers for linear distributed parameter systems: Exponential stability using residual mode filters. Journal of Mathematical Analysis and Applications 133, 283–296 (1988)

    Article  MATH  Google Scholar 

  6. Baudouin, L., Seuret, A., Gouaisbaut, F.: Stability analysis of a system coupled to a heat equation. Automatica 99, 195–202 (2019)

    Article  MATH  Google Scholar 

  7. Boyadzhiev, D., Kiskinov, H., Zahariev, A.: Stability analysis of linear distributed order fractional systems with distributed delays. Fractional Calculus and Applied Analysis 20(4), 914–935 (2017). https://doi.org/10.1515/fca-2017-0048

    Article  MATH  Google Scholar 

  8. Brin, I.: Concerning stability of some systems with distributed and lumped parameters. Avtomatika i Telemehanika 23(7), 863–871 (1962)

    Google Scholar 

  9. Cahlon, B., Kulkarni, D., Shi, P.: Stepwise stability for the heat equation with a nonlocal constraint. SIAM Journal on Numerical Analysis 32, 571–593 (1995)

    Article  MATH  Google Scholar 

  10. Cheng, A. & Morris, K.: Accurate approximation of invariant zeros for a class of SISO abstract boundary control systems. 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475) 2, 1315–1320 (2004)

  11. Curtain, R.: \(H^\infty \)-control for distributed parameter systems: a survey. 29th IEEE Conference on Decision and Control 1, 22–26 (1990)

  12. Cvetićanin, S., Zorica, D., Rapaić, M.: Generalized time-fractional telegrapher’s equation in transmission line modeling. Nonlinear Dynamics 88, 1453–1472 (2017)

    Article  MATH  Google Scholar 

  13. Feng, Y., Li, H.: Detection and spatial identification of fault for parabolic distributed parameter systems. IEEE Transactions on Industrial Electronics 66, 7300–7309 (2019)

    Article  Google Scholar 

  14. Feng, Y.: Spatial basis functions based fault localisation for linear parabolic distributed parameter systems. IET Control Theory & Applications 14 (2020)

  15. Fridman, E., Orlov, Y.: Exponential stability of linear distributed parameter systems with time-varying delays. Automatica 45, 194–201 (2009)

    Article  MATH  Google Scholar 

  16. Ge, Z., Zhu, G., Feng, D.: Exact controllability for singular distributed parameter system in Hilbert space. Science in China Series F: Information Sciences 52, 2045–2052 (2009)

    MATH  Google Scholar 

  17. Ha-Duong, T. & Joly, P.: On the stability analysis of boundary conditions for the wave equation by energy methods. Part I: The homogeneous case. Mathematics of Computation 62, 539–563 (1994)

  18. Hoo, K., Zheng, D.: Low-order control-relevant models for a class of distributed parameter systems. Chemical Engineering Science 56, 6683–6710 (2001)

    Article  Google Scholar 

  19. Liu, F. & Shi, G.: Uniform exponential stability of the time varying singular distributed parameter systems in Hilbert space. Proceedings of the 29th Chinese Control Conference, 5784–5788 (2010)

  20. Logemann, H.: Circle criteria, small-gain conditions and internal stability for infinite-dimensional systems. Automatica 27, 677–690 (1991)

    Article  MATH  Google Scholar 

  21. Logemann, H.: Stabilization and regulation of infinite-dimensional systems using coprime factorizations. In: Curtain, R.F., Bensoussan, A., Lions, J.L. (eds.) Analysis and Optimization of Systems: State and Frequency Domain Approaches for Infinite-Dimensional Systems. Lecture Notes in Control and Information Sciences 185, 102–139. Springer, Berlin Heidelberg (1993)

  22. Malti, R.: A note on \(\cal{L}_p\)-norms of fractional systems. Automatica 49(9), 2923–2927 (2013)

    Article  MATH  Google Scholar 

  23. Malti, R., Rapaić, M. & Turkulov, V.: A unified framework for robust stability analysis of linear irrational systems in the parametric space. Submitted to Automatica, available on https://hal.archives-ouvertes.fr/hal-03646956 (2022)

  24. Matignon, D.: Stability properties for generalized fractional differential systems. ESAIM: Proceedings 5, 145–158 (1998)

  25. Meirovitch, L., Baruh, H.: Control of self-adjoint distributed-parameter systems. Journal of Guidance, Control, and Dynamics 5, 60–66 (1982)

    Article  MATH  Google Scholar 

  26. Mori, K.: Two coprime-like factorizations for obtaining stabilizing controllers. 2019 Australian New Zealand Control Conference, 163–168 (2019)

  27. Özbay, H., Smith, M., Tannenbaum, A.: Mixed-sensitivity optimization for a class of unstable infinite-dimensional systems. Linear Algebra and its Applications 178, 43–83 (1993)

    Article  MATH  Google Scholar 

  28. Özbay, H.: Robust Control of Infinite Dimensional Systems: Theory and Applications. Springer-Verlag (1996)

  29. Ozturk, N., Uraz, A.: An analysis stability test for a certain class of distributed parameter systems with delays. IEEE Transactions on Circuits and Systems 32, 393–396 (1985)

    Article  MATH  Google Scholar 

  30. Pandolfi, L., Zwart, H.: Stability of perturbed linear distributed parameter systems. Systems & Control Letters 17, 257–264 (1991)

    Article  MATH  Google Scholar 

  31. Partington, J.: Some frequency-domain approaches to the model reduction of delay systems. Annual Reviews in Control 28, 65–73 (2004)

    Article  Google Scholar 

  32. Partington, J., Bonnet, C.: \(H^{\infty }\) and BIBO stabilization of delay systems of neutral type. Systems & Control Letters 52, 283–288 (2004)

    Article  MATH  Google Scholar 

  33. Polyakov, A., Efimov, D., Fridman, E., Perruquetti, W.: On homogeneous distributed parameter systems. IEEE Transactions on Automatic Control 61, 3657–3662 (2016)

    Article  MATH  Google Scholar 

  34. Poole, C. & Darwazeh, I.: Microwave Active Circuit Analysis and Design. Academic Press, Oxford, 51–88 (2016)

  35. Rapaić, M., Malti, R.: Stability regions of fractional systems in the space of perturbed orders. IET Control Theory & Applications 13, 2610–2619 (2019)

    Article  Google Scholar 

  36. Rebarber, R.: Conditions for the equivalence of internal and external stability for distributed parameter systems. IEEE Transactions on Automatic Control 38, 994–998 (1993)

    Article  MATH  Google Scholar 

  37. Reeve, W.: Subscriber loop signaling and transmission handbook. Wiley-IEEE Press, New York, 142–143 (1992)

  38. Reinschke, J., Smith, M.: Designing robustly stabilising controllers for LTI spatially distributed systems using coprime factor synthesis. Automatica 39, 193–203 (2003)

    Article  MATH  Google Scholar 

  39. Saeks, R., Murray, J.: Feedback system design: The tracking and disturbance rejection problems. IEEE Transactions on Automatic Control 26, 203–217 (1981)

    Article  Google Scholar 

  40. Skaar, S.B., Michel, A.N., Miller, R.K.: Stability of viscoelastic control systems. IEEE Transactions on Automatic Control 33(4), 348–357 (1988)

    Article  MATH  Google Scholar 

  41. Toker, O., Ozbay, H.: \(H^{\infty }\) optimal and suboptimal controllers for infinite dimensional SISO plants. IEEE Transactions on Automatic Control 40, 751–755 (1995)

    Article  MATH  Google Scholar 

  42. Turkulov, V., Rapaić, M. & Malti, R.: Stability analysis of time-delay systems in the parametric space. Automatica (provisionally accepted), (arXiv 2022), available on arXiv:2103.15629

  43. Vidyasagar, M., Schneider, H., Francis, B.: Algebraic and topological aspects of feedback stabilization. IEEE Transactions on Automatic Control 27, 880–894 (1982)

    Article  MATH  Google Scholar 

  44. Villegas, J.: A Port-Hamiltonian Approach to Distributed Parameter Systems. University of Twente (2007)

  45. Wang, T.: Stability in abstract functional differential equations. Part II: Applications. Journal of Mathematical Analysis and Applications 186, 835–861 (1994)

  46. Wang, Y., Huang, L., Liu, X.: Eigenvalue and stability analysis for transverse vibrations of axially moving strings based on Hamiltonian dynamics. Acta Mechanica Sinica 21, 485–494 (2005)

    Article  MATH  Google Scholar 

  47. Wang, C., Guo, Y., Zheng, S., Chen, Y.: Robust stability analysis of LTI systems with fractional degree generalized frequency variables. Fractional Calculus and Applied Analysis 22(6), 1655–1674 (2019). https://doi.org/10.1515/fca-2019-0085

    Article  MATH  Google Scholar 

  48. Weiss, G.: The representation of regular linear systems on Hilbert spaces. In: Kappel, F., Kunisch, K., Schappacher, W. (eds.) Control and Estimation of Distributed Parameter Systems, 401–416. Birkhauser Verlag, Basel (1989)

    Google Scholar 

  49. Xu, C., Arastoo, R. & Schuster, E.: On iterative learning control of parabolic distributed parameter systems. 2009 17th Mediterranean Conference on Control And Automation, 510–515 (2009)

  50. Yusuf, A., Inc, M., Aliyu, A., Baleanu, D.: Conservation laws, soliton-like and stability analysis for the time fractional dispersive long-wave equation. Advances in Difference Equations 2018, 319 (2018)

    Article  MATH  Google Scholar 

  51. Zhang, S., Liu, L., Xue, D., Chen, Y.: Stability and resonance analysis of a general non-commensurate elementary fractional-order system. Fractional Calculus and Applied Analysis 23(1), 183–210 (2020). https://doi.org/10.1515/fca-2020-0007

    Article  MATH  Google Scholar 

Download references

Acknowledgements

M.R. Rapaić is supported by the Ministry of Education, Science and Technological Development of Serbia through project no. 451-03-68/2022-14/200156 “Innovative scientific and artistic research from the FTS (activity) domain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vukan Turkulov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkulov, V., Rapaić, M.R. & Malti, R. A novel approach to stability analysis of a wide class of irrational linear systems. Fract Calc Appl Anal 26, 70–90 (2023). https://doi.org/10.1007/s13540-022-00126-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-022-00126-z

Keywords

Mathematics Subject Classification