Skip to main content
Log in

Cauchy problem for non-autonomous fractional evolution equations

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, we study the solvability of Cauchy problem for a class of non-autonomous fractional evolution equation with Caputo’s fractional derivative of order \(\alpha \in (1,2)\), which can be applied to model the time dependent coefficients fractional differential systems. We first introduce an operator family and analyze its properties, by the iterative method, we construct a solution to an operator-valued Volterra equation, which is the most critical ingredient to prove solvability of the problem. Finally, based on the solution operators we establish the existence and uniqueness of classical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acquistapace, P., Terreni, B.: A unified approach to abstract linear non-autonomous parabolic equations. Rend. Sem. Mat. Univ. Padova 78, 47–107 (1987)

    MathSciNet  MATH  Google Scholar 

  2. Arendt, W., Chill, R., Fornaro, S., Poupaud, C.: \(L^p\)-maximal regularity for non-autonomous evolution equations. J. Differential Equations 237, 1–26 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alvarez, E., Gal, C., Keyantuo, V., Warma, M.: Well-posedness results for a class of semi-linear super-diffusive equations. Nonlinear Anal. 181, 24–61 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bajlekova, E.G.: Fractional Evolution Equations in Banach Spaces. Doctoral thesis, Eindhoven University of Technology (2001)

  5. El-Borai, M.M.: The fundamental solutions for fractional evolution equations of parabolic type. Boletin Asoc. Math. Venezolana 11(1), 29–43 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Caponetto, R.: Fractional Order Systems: Modeling and Control Applications. World Scientific, Singapore (2010)

    Book  Google Scholar 

  7. Caffarelli, L.A., Stinga, P.R.: Fractional elliptic equations, Caccioppoli estimates and regularity. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 767–807 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dong, H., Kim, D.: \(L_p\)-estimates for time fractional parabolic equations with coefficients measurable in time. Adv. Math. 345, 289–345 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dong, H., Kim, D.: \(L_p\)-estimates for time fractional parabolic equations in divergence form with measurable coefficients. J. Funct. Anal. 278, 108338 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dong, H., Liu, Y.: Weighted mixed norm estimates for fractional wave equations with VMO coefficients. J. Differential Equations 337, 168–254 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Engheia, N.: On the role of fractional calculus in electromagnetic theory. IEEE Antennas and Propagation Mag. 39(4), 35–46 (1997)

    Article  Google Scholar 

  12. Ezzat, M.A.: Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Physica B: Condensed Matter 405(19), 4188–4194 (2010)

    Article  Google Scholar 

  13. Giga, Y., Namba, T.: Well-posedness of Hamilton-Jacobi equations with Caputo’s time fractional derivative. Comm. Partial Differential Equations 42, 1088–1120 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Glöckle, W.G., Nonnenmacher, T.F.: A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68(1), 46–53 (1995)

    Article  Google Scholar 

  15. He, J.W., Zhou, Y., Peng, L., Ahmad, B.: On well-posedness of semilinear Rayleigh-Stokes problem with fractional derivative on \(R^N\). Adv. Nonlinear Anal. 11, 580–597 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. He, J.W., Zhou, Y.: Hölder regularity for non-autonomous fractional evolution equations. Fract. Calc. Appl. Anal. 25(2), 378–407 (2022). https://doi.org/10.1007/s13540-022-00019-1

    Article  MathSciNet  Google Scholar 

  17. Henríquez, H.R., Poblete, V., Pozo, J.C.: Existence of solutions for the semilinear abstract Cauchy problem of fractional order. Fract. Calc. Appl. Anal. 24(5), 1409–1444 (2021). https://doi.org/10.1515/fca-2021-0060

    Article  MathSciNet  MATH  Google Scholar 

  18. Henríquez, H.R., Mesquita, J.G., Pozo, J.C.: Existence of solutions of the abstract Cauchy problem of fractional order. J. Func. Anal. 281(4), 109028 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kato, T., Tanabe, H.: On the abstract evolution equation. Osaka Math. J. 14, 107–133 (1962)

    MathSciNet  MATH  Google Scholar 

  20. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V, Amsterdam (2006)

    MATH  Google Scholar 

  21. Kim, I., Kim, K.H., Lim, S.: An \(L_q(L_p)\)-theory for the time fractional evolution equations with variable coefficients. Adv. Math. 306, 123–176 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, Y.N., Sun, H.R.: Regularity of mild solutions to fractional cauchy problems with Riemann-Liouville fractional derivative. Elec. J. Diff. Equs. 184, 1–13 (2014)

    Google Scholar 

  23. Li, L., Liu, J.G., Wang, L.: Cauchy problems for Keller-Segel type time-space fractional diffusion equation. J. Differential Equation. 265, 1044–1096 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. An Introduction to Mathematical Models. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  25. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  27. Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.L.: A fractional porous medium equation. Adv. Math. 226, 1378–1409 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  29. Podlubny, I.: Fractional-order systems and \(PI^\lambda D^\mu \)-controllers. IEEE Trans. Automat. Control 44(1), 208–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yagi, A.: Abstract Parabolic Evolution Equations and their Applications. Springer (2010)

  32. Zhou, Y.: Attractivity for fractional evolution equations with almost sectorial operators. Fract. Calc. Appl. Anal. 21(3), 786–800 (2018). https://doi.org/10.1515/fca-2018-0041

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhou, Y., He, J.W.: A Cauchy problem for fractional evolution equations with Hilfer’s fractional derivative on semi-infinite interval. Fract. Calc. Appl. Anal. 25(3), 924–961 (2022). https://doi.org/10.1007/s13540-022-00057-9

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (12071396, 12101142)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J.W., Zhou, Y. Cauchy problem for non-autonomous fractional evolution equations. Fract Calc Appl Anal 25, 2241–2274 (2022). https://doi.org/10.1007/s13540-022-00094-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-022-00094-4

Keywords

Mathematics Subject Classification

Navigation