Skip to main content
Log in

Holographic Transport with Topological Term and Entropy Function

  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, we consider the effect of a topological Maxwell term \(W(\Phi )F_{\mu \nu }\tilde{F}^{\mu \nu }\) on holographic transport and thermodynamics in 2 + 1 dimensions, in the case with a dyonic black hole in the gravity dual. We find that for a constant W the modifications to the thermodynamics are easily quantified, and transport is affected only for \(\sigma _{xy}\). If one considers also the attractor mechanism, and writing the horizon transport in terms of charges, the transport coefficients are affected explicitly. We also introduce the case of radially dependent W(z), in which case, however, analytical calculations become very involved. We also consider the implications of the two models for the S-duality of holographic transport coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). arXiv:hep-th/9711200

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Nastase, Introduction to the ADS/CFT Correspondence. Cambridge University Press, 9 (2015)

  3. M. Ammon, J. Erdmenger, Gauge/Gravity Duality (Cambridge University Press, Cambridge, 2015)

    Book  Google Scholar 

  4. H. Nastase, String Theory Methods for Condensed Matter Physics. Cambridge University Press, 9 (2017)

  5. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics. Class. Quant. Grav. 26, 224002 (2009). arXiv:0903.3246. [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Blake, A. Donos, N. Lohitsiri, Magnetothermoelectric response from holography. JHEP 08, 124 (2015). arXiv:1502.03789. [hep-th]

    Article  MathSciNet  Google Scholar 

  7. A. Donos, J.P. Gauntlett, T. Griffin, L. Melgar, DC conductivity of magnetised holographic matter. JHEP 01, 113 (2016). arXiv:1511.00713. [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Donos, J.P. Gauntlett, Thermoelectric DC conductivities from black hole horizons. JHEP 11, 081 (2014). arXiv:1406.4742. [hep-th]

    Article  ADS  Google Scholar 

  9. E. Banks, A. Donos, J.P. Gauntlett, Thermoelectric DC conductivities and Stokes flows on black hole horizons. JHEP 10, 103 (2015). arXiv:1507.00234. [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Donos, J.P. Gauntlett, Novel metals and insulators from holography. JHEP 06, 007 (2014). arXiv:1401.5077. [hep-th]

    Article  ADS  Google Scholar 

  11. A. Donos, J.P. Gauntlett, T. Griffin, N. Lohitsiri, L. Melgar, Holographic DC conductivity and Onsager relations. JHEP 07, 006 (2017). arXiv:1704.05141. [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  12. J. Erdmenger, D. Fernandez, P. Goulart, P. Witkowski, Conductivities from attractors. JHEP 03, 147 (2017). arXiv:1611.09381. [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  13. N. Iqbal, H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm. Phys. Rev. D 79, 025023 (2009). arXiv:0809.3808. [hep-th]

    Article  ADS  Google Scholar 

  14. L. Alejo, H. Nastase, Particle-vortex duality and theta terms in AdS/CMT applications. JHEP 08, 095 (2019). arXiv:1905.03549. [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  15. L. Alejo, P. Goulart, H. Nastase, S-duality, entropy function and transport in \(AdS_4/CMT_3\). JHEP 09, 003 (2019). arXiv:1905.04898. [hep-th]

  16. D. Melnikov, H. Nastase, Wiedemann-Franz laws and \(Sl(2,\mathbb{Z} )\) duality in AdS/CMT holographic duals and one-dimensional effective actions for them. JHEP 05, 092 (2021). arXiv:2011.12972. [hep-th]

  17. A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity. JHEP 09, 038 (2005). arXiv:hep-th/0506177

    Article  ADS  MathSciNet  Google Scholar 

  18. D.T. Son, A.O. Starinets, Minkowski space correlators in AdS / CFT correspondence: recipe and applications. JHEP 09, 042 (2002). arXiv:hep-th/0205051

    Article  ADS  MathSciNet  Google Scholar 

  19. G. Policastro, D.T. Son, A.O. Starinets, From AdS / CFT correspondence to hydrodynamics. JHEP 09, 043 (2002). arXiv:hep-th/0205052

    Article  ADS  MathSciNet  Google Scholar 

  20. P. Kovtun, D.T. Son, A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005). arXiv:hep-th/0405231

    Article  ADS  Google Scholar 

  21. S.A. Hartnoll, P. Kovtun, Hall conductivity from dyonic black holes. Phys. Rev. D 76, 066001 (2007). arXiv:0704.1160. [hep-th]

    Article  ADS  Google Scholar 

  22. S.A. Hartnoll, P.K. Kovtun, M. Muller, S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes. Phys. Rev. B 76, 144502 (2007). arXiv:0706.3215. [cond-mat.str-el]

    Article  ADS  Google Scholar 

  23. R.A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen, S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: the Sachdev-Ye-Kitaev models and holography, Phys. Rev. B 95(15), 155131 (2017). arXiv:1612.00849. [cond-mat.str-el]

  24. S. Sachdev, Universal low temperature theory of charged black holes with AdS\(_2\) horizons, J. Math. Phys. 60(5), 052303 (2019). arXiv:1902.04078. [hep-th]

  25. N.R. Cooper, B.I. Halperin, I.M. Ruzin, Thermoelectric response of an interacting two-dimensional electron gas in a quantizing magnetic field. Phys. Rev. B 55(4), 2344–2359 (1997). arXiv:cond-mat/9607001

  26. D. Astefanesei, H. Nastase, H. Yavartanoo, S. Yun, Moduli flow and non-supersymmetric AdS attractors. JHEP 04, 074 (2008). arXiv:0711.0036. [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  27. D. Astefanesei, N. Banerjee, S. Dutta, Near horizon data and physical charges of extremal AdS black holes. Nucl. Phys. B 853, 63–79 (2011). arXiv:1104.4121. [hep-th]

Download references

Acknowledgements

We thank Dmitry Melnikov for useful discussions.

Funding

The work of HN is supported in part by CNPq grant 301491/2019-4 and FAPESP grant 2019/21281-4. HN would also like to thank the ICTP-SAIFR for their support through FAPESP grant 2016/01343-7. The work of CLT is supported by CNPq grant 141016/2019-1.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally.

Corresponding author

Correspondence to Horatiu Nastase.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Solutions for Fluctuations in the Case of W(z)

$$\begin{aligned} \begin{aligned} \mathcal {W}(u) =&-\frac{i}{\gamma _x} \int _0^u -i \left( \frac{4 \left( h^2+q^2\right) W(z) (\gamma _y q z-\alpha _y)}{q} \right) \, dz \\&-u \frac{\gamma _x h^3 \left( u^2 \left( 2 q^2 (u-1) (4 u-3)-7 u+6\right) +4\right) }{\gamma _x h \left( h^2+q^2-3\right) } \\&-u \frac{2 h^2 \left( \gamma _y q^3 (3-2 u)+\left( 2 q^2-3\right) Z_0 (\gamma _y q u-2 \alpha _y)+3 \gamma _y q (u-1)\right) }{\gamma _x h \left( h^2+q^2-3\right) } \\&-u \frac{h^4 (\gamma _y q (2 u (Z_0-1)+3)-4 \alpha _y Z_0)+\gamma _x h^5 (u-1) u^2 (4 u-3)}{\gamma _x h \left( h^2+q^2-3\right) } \\&-u \frac{\gamma _x h \left( q^2 \left( u^2 \left( q^2 (u-1) (4 u-3)-7 u+6\right) +4\right) +3 u^2\right) }{\gamma _x h \left( h^2+q^2-3\right) } \\&-u \frac{q \left( q^2-3\right) \left( 3 \gamma _y+\gamma _y q^2 (2 u (Z_0-1)+3)-4 \alpha _y q Z_0\right) }{\gamma _x h \left( h^2+q^2-3\right) }. \end{aligned} \end{aligned}$$
(A.1)
$$\begin{aligned} \begin{aligned} \mathcal {A}^0_x(u)&= i\frac{ (h^3 z^2 (4 z-3) (\gamma _x q z-\alpha _x)+h^2 q (\gamma _y q z-\alpha _y)}{h (z-1) \left( h^2+q^2-3\right) \left( z \left( z \left( z \left( h^2+q^2\right) -1\right) -1\right) -1\right) }\\&+ i\frac{hz^2 \left( q^2 (4 z-3)-3\right) (\gamma _x q z-\alpha _x)+q \left( q^2-3\right) (\gamma _y q z-\alpha _y))}{h (z-1) \left( h^2+q^2-3\right) \left( z \left( z \left( z \left( h^2+q^2\right) -1\right) -1\right) -1\right) }\\&+ \frac{i \gamma _y q \left( h^2 (3-4 z)+q^2 (3-4 z)+3\right) }{4 h (z-1) \left( z \left( z \left( z \left( h^2+q^2\right) -1\right) -1\right) -1\right) (h W(z)+q Z_0)} \end{aligned} \end{aligned}$$
(A.2)

and similarly for \(\mathcal {A}^0_y(u)\).

Solution for Fluctuations for the Anisotropic Model

$$\begin{aligned} \begin{aligned} \gamma _y = \frac{\left( h^2+q^2-3\right) }{3 h k_x \left( h^2+q^2+1\right) }&\left( -i h k_x \int _0^1 \frac{4 i k_y W(z) \left( h^2+k_x k_y q^2\right) (\gamma _x q z-\alpha _x)}{q (k_x k_y)^{3/2}} \, dz \right. \\&\quad \quad \left. -4 \alpha _x Z_0 \left( h^2+k_x k_y q^2\right) \right. \\ \quad&\left. +\gamma _x q \left( k_x k_y \left( h^2+2 q^2 Z_0+q^2+3\right) +2 h^2 Z_0\right) \right) \end{aligned} \end{aligned}$$
(B.1)

and

$$\begin{aligned} \begin{aligned} \gamma _x = \frac{\left( h^2+q^2-3\right) }{3 h k_y \left( h^2+q^2+1\right) }&\left( i h k_y \int _0^1 \frac{4 i k_x W(z) \left( h^2+k_x k_y q^2\right) (\gamma _y q z-\alpha _y)}{q (k_x k_y)^{3/2}} \, dz\right. \\&\quad \quad \left. -4 \alpha _y Z_0 \left( h^2+k_x k_y q^2\right) \right. \\&\left. \quad +\gamma _y q \left( k_x k_y \left( h^2+2 q^2 Z_0+q^2+3\right) +2 h^2 Z_0\right) \right) \end{aligned} \end{aligned}$$
(B.2)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nastase, H., Tiedt, C.L. Holographic Transport with Topological Term and Entropy Function. Braz J Phys 54, 114 (2024). https://doi.org/10.1007/s13538-024-01487-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01487-x

Navigation