Skip to main content
Log in

Binary Packing of Spherical Particles with Moderate Size Ratios in Viscous Fluid: A CFD-DEM Study

  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Random packing of binary mixtures of spherical particles in viscous fluid is numerically investigated via CFD-DEM, where moderate size ratios (d/D) are specially considered. Results indicate that binary packing in fluid is much looser than that in the absence of fluid, and two distinct phenomena can be identified as the global packing density varies with the volume fraction of coarse particle (XD). For small size ratios, the global packing density first increases with increasing XD due to the occupation mechanism, and then it reaches the maximum value when XD ≈ 0.6, beyond which the global packing density decreases as XD increases further. However, for large size ratios, the global packing density always decreases with increasing XD. These phenomena are further discussed by using the local packing density determined by Voronoi tessellation, the mean and local coordination number, and radial distribution function, with which the particle arrangements within binary mixtures are well identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. F. Podczeck, M. Sharma, The influence of particle size and shape of components of binary powder mixtures on the maximum volume reduction due to packing. Int. J. Pharm. 137, 41–47 (1996)

    Article  Google Scholar 

  2. I. Biazzo, F. Caltagirone, G. Parisi, F. Zamponi, Theory of amorphous packings of binary mixtures of hard spheres. Phys. Rev. Lett. 102, 195701 (2009)

    Article  ADS  Google Scholar 

  3. H.J.H. Brouwers, Particle-size distribution and packing fraction of geometric random packings. Phys. Rev. E 74, 031309 (2006)

    Article  ADS  Google Scholar 

  4. A.S. Clarke, J.D. Wiley, Numerical simulation of the dense random packing of a binary mixture of hard spheres: amorphous metals. Phys. Rev. B 35, 7350–7356 (1987)

    Article  ADS  Google Scholar 

  5. M.D. Eldridge, P.A. Madden, D. Frenkel, Entropy-driven formation of a superlattice in a hard-sphere binary mixture. Nature 365, 35–37 (1993)

    Article  ADS  Google Scholar 

  6. S. Pillitteri, E. Opsomer, G. Lumay, N. Vandewalle, How size ratio and segregation affect the packing of binary granular mixtures. Soft Matter 16, 9094–9100 (2020)

    Article  ADS  Google Scholar 

  7. J. Zheng, W.B. Carlson, J.S. Reed, The packing density of binary powder mixtures. J. Eur. Ceram. Soc. 15, 479–483 (1995)

    Article  Google Scholar 

  8. R. Al-Raoush, M. Alsaleh, Simulation of random packing of polydisperse particles. Powder Technol. 176, 47–55 (2007)

    Article  Google Scholar 

  9. W. Liu, S. Chen, C.-Y. Wu, S. Li, Unified size-density and size-topology relations in random packings of dry adhesive polydisperse spheres. Phys. Rev. E 99, 022901 (2019)

    Article  ADS  Google Scholar 

  10. E.I. Corwin, M. Clusel, A.O.N. Siemens, J. Brujic, Model for random packing of polydisperse frictionless spheres. Soft Matter 6, 2949–2959 (2010)

    Article  ADS  Google Scholar 

  11. V. Baranau, U. Tallarek, Random-close packing limits for monodisperse and polydisperse hard spheres. Soft Matter 10, 3826–3841 (2014)

    Article  ADS  Google Scholar 

  12. V. Ogarko, S. Luding, Prediction of polydisperse hard-sphere mixture behavior using tridisperse systems. Soft Matter 9, 9530–9534 (2013)

    Article  ADS  Google Scholar 

  13. Y. Rouault, S. Assouline, Modeling the disordered dense phase in the packing of binary mixtures of spheres. J. Colloid Interface Sci. 204, 87–92 (1998)

    Article  ADS  Google Scholar 

  14. G.E. Schröder-Turk, W. Mickel, M. Schröter, G.W. Delaney, M. Saadatfar, T.J. Senden, K. Mecke, T. Aste, Disordered spherical bead packs are anisotropic. EPL 90, 34001 (2010)

    Article  ADS  Google Scholar 

  15. M. Jerkins, M. Schröter, H.L. Swinney, Onset of mechanical stability in random packings of frictional spheres. Phys. Rev. Lett. 101, 018301 (2008)

    Article  ADS  Google Scholar 

  16. C.S. Chang, Y. Deng, Packing potential index for binary mixtures of granular soil. Powder Technol. 372, 148–160 (2020)

    Article  Google Scholar 

  17. I. Prasad, C. Santangelo, G. Grason, Subjamming transition in binary sphere mixtures. Phys. Rev. E 96, 052905 (2017)

    Article  ADS  Google Scholar 

  18. S. Liu, Z. Ha, Prediction of random packing limit for multimodal particle mixtures. Powder Technol. 126, 283–296 (2002)

    Article  Google Scholar 

  19. L. Meng, P. Lu, S. Li, Packing properties of binary mixtures in disordered sphere systems. Particuology 16, 155–166 (2014)

    Article  Google Scholar 

  20. S. Yerazunis, S.W. Cornell, B. Wintner, Dense random packing pf binary mixtures of spheres. Nature 207, 835–837 (1965)

    Article  ADS  Google Scholar 

  21. D. Pinson, R.P. Zou, A.B. Yu, P. Zulli, M.J. McCarthy, Coordination number of binary mixtures of spheres. J. Phys. D Appl. Phys. 31, 457–462 (1998)

    Article  ADS  Google Scholar 

  22. Y. Guo, C.-Y. Wu, K.D. Kafui, C. Thornton, 3D DEM/CFD analysis of size-induced segregation during die filling. Powder Technol. 206, 177–188 (2011)

    Article  Google Scholar 

  23. F. Qian, N. Huang, J. Lu, Y. Han, CFD–DEM simulation of the filtration performance for fibrous mediabased on the mimic structure. Comput. Chem. Eng. 71, 478–488 (2014)

    Article  Google Scholar 

  24. J.S. Marshall, Discrete-element modeling of particulate aerosol flows. J. Comput. Phys. 228, 1541–1561 (2009)

    Article  ADS  Google Scholar 

  25. K.D. Kafui, C. Thornton, M.J. Adams, Discrete particle-continuum fluid modelling of gas-solid fluidised beds. Chem. Eng. Sci. 57, 2395–2410 (2002)

    Article  Google Scholar 

  26. H. Chen, Granular vortex ring formed by penetration into loose granular medium: structure identification. Commun. Nonlinear Sci. Numer. Simul. 127, 107542 (2023)

    Article  MathSciNet  Google Scholar 

  27. H. Chen, L. Xia, C. Li, Z. Zheng, Penetration into a granular bed in the presence of upward gas flows. Particuology 82, 1–12 (2022)

    Article  Google Scholar 

  28. J.S. Marshall, S. Li, Adhesive particle flow: a discrete-element approach (Cambridge University Press, New York, 2014)

    Book  Google Scholar 

  29. A.B. Yu, N. Standish, Estimation of the porosity of particle mixtures by a linear-mixture packing model. Ind. Eng. Chem. Res. 30, 1372–1385 (1991)

    Article  Google Scholar 

  30. R.P. Dias, J.A. Teixeira, M.G. Mota, A.I. Yelshin, Particulate binary mixtures: dependence of packing porosity on particle size ratio. Ind. Eng. Chem. Res. 43, 7912–7919 (2004)

    Article  Google Scholar 

  31. M. Mota, J. Teixeira, A. Yelshin, Binary spherical particle mixed beds porosity and permeability relationship measurement. The transactions of the Filtration Society 1, 101–106 (2001)

    Google Scholar 

  32. H.Y. Sohn, C. Moreland, The effect of particle size distribution on packing density. Can. J. Chem. Eng. 46, 162–167 (1968)

    Article  Google Scholar 

  33. S. Yerazunis, J.W. Bartlett, A.H. Nissan, Packing of binary mixtures of spheres and irregular particles. Nature 195, 33–35 (1962)

    Article  ADS  Google Scholar 

  34. D. Bouvard, F.F. Lange, Correlation between random dense parking and random dense packing for determining particle coordination number in binary systems. Phys. Rev. A 45, 5690–5693 (1992)

    Article  ADS  Google Scholar 

  35. H. Chen, W. Liu, S. Li, Random loose packing of small particles with liquid cohesion. AIChE J. 65, 500–511 (2019)

    Article  ADS  Google Scholar 

Download references

Funding

This work is financially supported by China Baowu Low Carbon Metallurgical Innovation Foundation (No. 202114). National Natural Science Foundation of China (No. 52304346) The Natural Science Foundation of Chongqing (No. cstc2021jcyj-msxmX0028).

Author information

Authors and Affiliations

Authors

Contributions

H. Chen wrote the main manuscript text, Z. Zheng provided supervision and funding acquisition. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hongsheng Chen.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zheng, Z. Binary Packing of Spherical Particles with Moderate Size Ratios in Viscous Fluid: A CFD-DEM Study. Braz J Phys 54, 110 (2024). https://doi.org/10.1007/s13538-024-01476-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01476-0

Keywords

Navigation