Skip to main content
Log in

Effect of Ion Temperature Anisotropy on Damped and Undamped Ion-Acoustic KdV Solitons in Plasmas and Quasi-periodic Wave Structures with Kappa-Distributed Electrons

  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The periodic, quasi-periodic and solitonic properties of ion-acoustic wave (IAW) with ion pressure anisotropy are examined in a magnetized nonthermal electron-ion plasma. Using CGL theory, double adiabatic equation of state for ions is assumed and inertialess electrons are considered to follow nonthermal \(\kappa\)-distribution. A damping in the system due to ions and neutral atoms collision is also included in the presence of ion pressure anisotropy. The reductive perturbation (RP) method is used to derive Kortewge-de Vries (KdV) equation in a collisionless plasma case and the damped KdV equation with collisional effects for IAW propagation in a magnetized plasma. The effects of anisotropic ion pressure and spectral index \(\kappa\) for nonthermal electrons on the formation of quasi-periodic nonlinear IAW structures in the presence of external periodic force and their changing from period doubling to multi-periods are investigated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. M.Q. Tran, S. Coquerand, Phys. Rev. A 14, 2301 (1976)

    Article  ADS  Google Scholar 

  2. Y. Nakamura, I. Tsukabayashi, Phys. Rev. Lett. 52, 2356 (1984)

    Article  ADS  Google Scholar 

  3. J.L. Cooney, M.T. Gavin, K.E. Lonngren, Phys. Fluids B Plasma Phys. 3, 2758–2766 (1991)

    Article  Google Scholar 

  4. J.L. Cooney, D.W. Aossey, J.E. Williams, K.E. Lonngren, Plasma Phys. Rev. E 47, 564 (1993)

    ADS  Google Scholar 

  5. H.U. Rehman, S. Mahmood, Phys. Scr. 89, 105605 (2014)

    Article  ADS  Google Scholar 

  6. M.R. Collier, D.C. Hamilton, G. Gloeckler, P. Bochsler, R.B. Sheldon, Geophys. Res. Lett. 23, 1191–1194 (1996)

    Article  ADS  Google Scholar 

  7. V. Pierrard, M. Lazar, Solar Phys. 267, 153–174 (2010)

    Article  ADS  Google Scholar 

  8. G. Livadiotis, D.J. McComas, Space Sci. Rev. 175, 183–214 (2013)

    Article  ADS  Google Scholar 

  9. M.P. Leubner, Astrophys. Space Sci. 282, 573–579 (2002)

    Article  ADS  Google Scholar 

  10. M.A. Hellberg, R.L. Mace, T.K. Baluku, I. Kourakis, N.S. Saini, Phys. Plasmas. 16, 094701 (2009)

    Article  ADS  Google Scholar 

  11. G. Livadiotis, J. Geophys. Res. Space Phys. 120, 1607–1619 (2015)

    Article  ADS  Google Scholar 

  12. V.L. Talekar, S.S. Rawat, Int. J. Electron. 26, 29–39 (1969)

    Article  Google Scholar 

  13. J.A. Bittencout, Fundamentals of plasma physics (Springer Science + Bussiness Media, New York, 2004), Chap. 12, p. 300

  14. G.F. Chew, M.L. Goldberger, F.E. Low, Pro. Royal Soc. London. Series A. Math. Phys. Sci. 236, 112–118 (1956)

    ADS  Google Scholar 

  15. I.B. Bernstein, S.K. Trehan, Plasma oscillations (I). Nucl. Fusion 1, 3 (1960)

    Article  MathSciNet  Google Scholar 

  16. R.F. Post, W.A. Perkins, Phys. Rev. Lett. 6, 85 (1961)

    Article  ADS  Google Scholar 

  17. A. Macmahon, Phys. Fluids 8, 1840–1845 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  18. S.W. Lee, C. Liang, Y.T. Lo, Radio Sci. 1, 815–824 (1966)

    Article  ADS  Google Scholar 

  19. R.K. Jaggi, Phys. Fluids (New York) 5, 949–962 (1962)

  20. J. Teichmann, Canadian J. Phys. 44, 2973–2999 (1966)

    Article  ADS  Google Scholar 

  21. S.R. Sharma, Canadian J. Phys. 45, 3189–3198 (1967)

    Article  ADS  Google Scholar 

  22. V.L. Talekar, S.S. Rawat, International Journal of Electronics Theoretical and Experimental 29, 533–539 (1970)

    Article  Google Scholar 

  23. A. Bader, G. Stenberg Wieser, M. André, M. Wieser, Y. Futaana, M. Persson, H. Nilsson, T.L. Zhang, J. Geophys. Res. Space Phys. 124, 3312–3330 (2019)

    Article  ADS  Google Scholar 

  24. R.K. Chhajlani, S.C. Bhand, J. Plasma Phys. 23, 205–208 (1980)

    Article  ADS  Google Scholar 

  25. M. Adnan, G. Williams, A. Qamar, S. Mahmood, I. Kourakis, Eur. Phys. J. D 68, 1–15 (2014)

    Article  Google Scholar 

  26. S.U. Khan, M. Adnan, S. Mahmood, H.U. Rehman, A. Qamar, Brazilian J. Phys. 49, 379–390 (2019)

    Article  ADS  Google Scholar 

  27. U.K. Samanta, A. Saha, P. Chatterjee, Phys. Plasmas 20, 052111 (2013)

    Article  ADS  Google Scholar 

  28. H.L. Zhen, B. Tian, Y.F. Wang, W.R. Sun, L.C. Liu, Phys. Plasmas 21, 073709 (2014)

    Article  ADS  Google Scholar 

  29. H.U. Rehman, Chin. Phys. B 22, 035202 (2013)

    Article  ADS  Google Scholar 

  30. A. Saha, P. Chatterjee, Brazilian J. Phys. 45, 419–426 (2015)

    Article  ADS  Google Scholar 

  31. K.T. Das, A. Saha, N. Pal, P. Chatterjee, Phys. Plasmas 24, 073707 (2017)

    Article  ADS  Google Scholar 

  32. Z. Rahim, M. Adnan, A. Qamar, A. Saha, Phys. Plasmas 25, 083706 (2018)

    Article  ADS  Google Scholar 

  33. S. Mahmood, M.Z. Ali, H.U. Rehman, J. Phys. Soc. J. 89, 034501 (2020)

    Article  ADS  Google Scholar 

  34. A.M. Salam, A.M. Ali, M.Z. Ali, Results Phys. 32, 105114 (2020)

    Google Scholar 

  35. S. Mahmood, H.U. Rehman, M.Z. Ali, A. Basit, Cont. Plasma Phys. 61, e202000211 (2021)

    Article  Google Scholar 

  36. A. Saha, N. Pal, T. Saha, M.K. Ghorui, P. Chatterjee, J. Theor. Appl. Phys. 10, 271–280 (2016)

    Article  ADS  Google Scholar 

  37. A. Saha, B. Pradhan, S. Banerjee, Phys. Scr. 95, 055602 (2020)

    Article  ADS  Google Scholar 

  38. C.R. Choi, C.-M. Ryu, D.-Y. Lee, N.C. Lee, Y.-H. Kim, Phys. Lett. A 364, 297 (2007)

    Article  ADS  Google Scholar 

  39. M. Adnan, S. Mahmood, A. Qamar, Contrib. Plasma Phys. 54, 724–734 (2014)

    Article  ADS  Google Scholar 

  40. R. Ali, A. Saha, P. Chatterjee, Phys. Plasmas 24, 122106 (2017)

    Article  ADS  Google Scholar 

  41. S. Chowdhury, L. Mandi, P. Chatterjee, Phys. Plasmas 25, 042112 (2018)

    Article  ADS  Google Scholar 

  42. A. Sen, S. Tiwari, S. Mishra, P. Kaw, Adv. Space Res. 56, 429–435 (2015)

    Article  ADS  Google Scholar 

  43. P. Chatterjee, R. Ali, A. Saha, Zeitschrift für Naturforschung A 73, 151–159 (2018)

    Article  ADS  Google Scholar 

  44. S. Hussain, H.U. Rehman, S. Mahmood, Astrophys. Space Sci. 351, 573–580 (2014)

    Article  ADS  Google Scholar 

  45. R.C. Davidson, Methods in nonlinear plasma theory (University of Maryland, 1972), p.29

    Google Scholar 

  46. T. Kaladze, S. Mahmood, H.U. Rehman, Phys. Scr. 86, 035506 (2012)

    Article  ADS  Google Scholar 

  47. P. Niranjan, R. Ali, K.K. Mondal, P. Chatterjee, Int. J. Appl. Comput. Math. 7, 1–15 (2021)

    Article  Google Scholar 

  48. R.A. Treumann, W. Baumjohann, Advanced space plasma physics (Imperial College Press, 1997), Chap. 3

  49. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Phys. D Nonlinear Phenom. 16, 285 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.M. given the idea. H.R. did the calculations and wrote the manuscript. S.S. prepared the figures. Finally, S.M. refined the written manuscript.

Corresponding author

Correspondence to Hafeez Ur-Rehman.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ur-Rehman, H., Mahmood, S. & Sadiq, S. Effect of Ion Temperature Anisotropy on Damped and Undamped Ion-Acoustic KdV Solitons in Plasmas and Quasi-periodic Wave Structures with Kappa-Distributed Electrons. Braz J Phys 54, 69 (2024). https://doi.org/10.1007/s13538-024-01446-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-024-01446-6

Keywords

Navigation