Skip to main content
Log in

Photothermal Antibacterial Activity of Gold Nanorods Stabilized by Phospholipid

  • Atomic Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, thermal stability of phospholipid-decorated gold nanorods and their photothermal activity against Staphylococcus epidermidis were experimentally studied. For this aim, cetyl trimethyl ammonium bromide (CTAB) stabilized gold nanostructures were first synthesized, and then the chemical bilayers were exchanged with phospholipid (DMPC). The effects of this replacement on the shape and spectral properties of gold nanorods were analyzed by UV–vis and FTIR as well as transmission electron microscopy (TEM). In addition, thermal heating at 95 ± 2 °C caused CTAB-decorated gold nanorods to decompose in less than half an hour, whereas the phospholipid-modified gold nanorods maintained their spectral characteristics for up to 5 h. Furthermore, while the minimum inhibitory concentration (MIC) for CTAB-AuNRs was obtained equal to 5 μg/ml, DMPC-AuNRs did not indicate significant toxicity in concentrations below 20 μg/ml. The photothermal-induced bactericidal activity of DMPC-gold nanorods was investigated through illumination by a laser with the wavelength of 808 nm. It was demonstrated that treating Staphylococcus epidermidis with the nontoxic concentration of phospholipid-stabilized gold nanorod suspension followed by the laser beam exposure for 15 min resulted in a 4.6 log reduction in the bacterial viable count.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Oliveira, P. Silva, R. Silva, G. Silva, G. Machado, L. Coelho, M. Correia, J. Hosp. Infect. 98, 111–117 (2018)

    Article  Google Scholar 

  2. I. Uçkay, D. Pittet, P. Vaudaux, H. Sax, D. Lew, F. Waldvogel, Ann. Med. 41, 109–119 (2009)

    Article  Google Scholar 

  3. M.T. McCann, B.F. Gilmore, S.P. Gorman, J. Pharm. Pharmacol. 60, 1551–1571 (2008)

    Article  Google Scholar 

  4. N.N. Mahmoud, A.M. Alkilany, E.A. Khalil, A.G. Al-Bakri, Sci. Rep. 8, 1–10 (2018)

    Google Scholar 

  5. M. Ramasamy, S. Kim, S.S. Lee, D.K. Yi, J. Nanosci. Nanotechnol. 16, 555–561 (2016)

    Article  Google Scholar 

  6. R.S. Norman, J.W. Stone, A. Gole, C.J. Murphy, T.L. Sabo-Attwood, Nano. Lett. 8, 302–306 (2008)

    Article  ADS  Google Scholar 

  7. S. Yougbaré, C. Mutalik, D.I. Krisnawati, H. Kristanto, A. Jazidie, M. Nuh, T.-M. Cheng, T.-R. Kuo, Nanomaterials. 10, 1123 (2020)

    Article  Google Scholar 

  8. R. Zou, Q. Zhang, Q. Zhao, F. Peng, H. Wang, H. Yu, J. Yang, Colloids Surf. A. 372, 177–181 (2010)

    Article  Google Scholar 

  9. N.A. Joy, B.K. Janiszewski, S. Novak, T.W. Johnson, S.-H. Oh, A. Raghunathan, J. Hartley, M.A. Carpenter, J. Physic. Chem. C. 117, 11718–11724 (2013)

    Article  Google Scholar 

  10. Y.-S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, S. Emelianov, Opt. Exp. 18, 8867–8878 (2010)

    Article  ADS  Google Scholar 

  11. W. Chang, J. Wang, J. Zhang, Q. Ling, Y. Li, J. Wang, Pharmaceutics. 14, 1110 (2022)

    Article  Google Scholar 

  12. A.B. Taylor, A.M. Siddiquee, J.W. Chon, ACS Nano 8, 12071–12079 (2014)

    Article  Google Scholar 

  13. H. Petrova, J.P. Juste, I. Pastoriza-Santos, G.V. Hartland, L.M. Liz-Marzán, P. Mulvaney, Phys. Chem. Chem. Phys. 8, 814–821 (2006)

    Article  Google Scholar 

  14. Y.A. Attia, T.A. Altalhi, A.A. Gobouri, Adv. Nanopart. 4, 85 (2015)

    Article  Google Scholar 

  15. S. Hashimoto, D. Werner, T. Uwada, J. Photochem. Photobiol. C. 13, 28–54 (2012)

    Article  Google Scholar 

  16. H. Nakashima, K. Furukawa, Y. Kashimura, K. Torimitsu, Langmuir 24, 5654–5658 (2008)

    Article  Google Scholar 

  17. C.S. Levin, J. Kundu, B.G. Janesko, G.E. Scuseria, R.M. Raphael, N.J. Halas, J. Phys. Chem. B 112, 14168–14175 (2008)

    Article  Google Scholar 

  18. S. Sitaula, M.R. Mackiewicz, S.M. Reed, Chemical Commun. 3013–3015(2008)

  19. J. Kundu, C.S. Levin, N.J. Halas, Nanoscale 1, 114–117 (2009)

    Article  ADS  Google Scholar 

  20. E.T. Castellana, R.C. Gamez, D.H. Russell, J. Am. Chem. Soc. 133, 4182–4185 (2011)

    Article  Google Scholar 

  21. H. Takahashi, Y. Niidome, T. Niidome, K. Kaneko, H. Kawasaki, S. Yamada, Langmuir 22, 2–5 (2006)

    Article  Google Scholar 

  22. S.E. Lee, D.Y. Sasaki, T.D. Perroud, D. Yoo, K.D. Patel, L.P. Lee, J. Am. Chem. Soc. 131, 14066–14074 (2009)

    Article  Google Scholar 

  23. N.C. Tam, B.M. Scott, D. Voicu, B.C. Wilson, G. Zheng, Bioconjug. Chem. 21, 2178–2182 (2010)

    Article  Google Scholar 

  24. A. Gole, C.J. Murphy, Chem. Mater. 16, 3633–3640 (2004)

    Article  Google Scholar 

  25. J. Pérez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzán, P. Mulvaney, Coord. Chem. Rev. 249, 1870–1901 (2005)

    Article  Google Scholar 

  26. C.J. Orendorff, T.M. Alam, D.Y. Sasaki, B.C. Bunker, J.A. Voigt, ACS Nano. 3, 971–983 (2009)

    Article  Google Scholar 

  27. G. Kaptay, J. Nanosci. Nanotechnol. 12, 2625–2633 (2012)

    Article  Google Scholar 

  28. J.R. Lepock, K.-H. Cheng, H. Al-qysi, I. Sim, C.J. Koch, J. Kruuv, Int. J. Hyperth. 3, 123–132 (1987)

    Article  Google Scholar 

  29. X.-M. Zhu, C. Fang, H. Jia, Y. Huang, C.H. Cheng, C.-H. Ko, Z. Chen, J. Wang, Y.-X.J. Wang, Nanoscale. 6, 11462–11472 (2014)

    Article  ADS  Google Scholar 

  30. L. Abdulazeem, S.A. Jasim, W.J. Rajab, Materials Today: Proceedings (2021)

  31. K. Gold, B. Slay, M. Knackstedt, A.K. Gaharwar, Advanced Therapeutics 1, 1700033 (2018)

    Article  Google Scholar 

  32. A. Manke, L. Wang, Y. Rojanasakul, Bio. Med. Res. Int. (2013)

  33. K. Das, A. Roychoudhury, Front. Environ. Sci. 2, 53 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Kariminezhad.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamedani, H., Kariminezhad, H. & Amani, H. Photothermal Antibacterial Activity of Gold Nanorods Stabilized by Phospholipid. Braz J Phys 53, 50 (2023). https://doi.org/10.1007/s13538-023-01265-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01265-1

Keywords

Navigation