Skip to main content

Structural and Optical Properties of SmFe0.8Mn0.2O3 Nanocrystallites


The rare-earth metal oxides often manifest various unique properties such as quantum confinement drove band gap at the nano length scale due to larger surface/volume ratio. These properties have shown multiple applications in electronic, optical, and magnetic data storage devices. In this work, we have synthesized SmFe0.8Mn0.2O3 (SFMO) ceramic powder with a solid-state reaction route. The structural analysis of the SFMO sample was determined by X-ray diffraction (XRD) and selected area electron diffraction (SAED), which suggest an orthorhombic crystal structure having Pbnm space group symmetry. SFMO nanoparticles of sizes ranging from 15 to 100 nm with an average particle size ≈ 20 nm have been observed by transmission electron microscopy (TEM). TEM micrographs clearly reveal the visualization of a polycrystalline pattern examined under SAED pattern supported by XRD data. The optical properties of SFMO have been studied with UV–vis spectroscopy. Subsequently, the sample’s optical band gap was calculated to be 1.48 eV, which is smaller in contrast to the reported band gap (2.2 eV) of the parent SmFeO3 compound. The experimental findings suggest that orthoferrite SFMO displays various distinct features compared to parent compounds SmFeO3 and SmMnO3.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

Data is available with corresponding author.


  1. S. Chaturvedi, P. Shyam, R. Bag, MM. Shirolkar, J. Kumar, H. Kaur, S. Singh, AM. Awasthi, S. Kulkarni, Enhanced compensation temperature and existence of magnetodielectric coupling in SmFeO3. Phys. Rev. B. 96, 024434 (2017)

  2. J. Kanga, Y. Yang, Spin-reorientation magnetic transitions in Mn-doped SmFeO3. IUCrJ 4, 598–603 (2017)

    Article  Google Scholar 

  3. A. Kumar, J. SHEN, H. Zhao, Q. Zhengjian, Q. Li, Crystallographic and magnetic properties of nanocrystalline perovskite structure SmFeO3 orthoferrite. J Crys. Grow. 490, 1–5 (2018)

  4. A.V. Kimel, Inertia-driven spin switching in antiferromagnets. Nat. Phys. 5, 727 (2009)

    Article  Google Scholar 

  5. P. Sahlot, A.M. Awasthi, Crystallite-size dependent harmonic magneto-electricity in SmFeO3. arXiv: (2020)

  6. L. Chen, The role of 4f-electron on spin reorientation transition of NdFeO3: a first principle study. J. Appl. Phys. 111, 103905 (2012)

    Article  ADS  Google Scholar 

  7. D.S. Schmoo, Magnetic and magneto-optic properties of orthoferrite thin films grown by pulsed-laser deposition. J. Appl. Phys. 86, 5712 (1999)

    Article  ADS  Google Scholar 

  8. J.-H. Lee, Spin-canting-induced improper ferroelectricity and spontaneous magnetization reversal in SmFeO3. Phys. Rev. Lett. 107, 117201 (2011)

    Article  ADS  Google Scholar 

  9. C.Y. Kuo, k= ¼ 0 magnetic structure and absence of ferroelectricity in SmFeO3. Phys/ Rev. Lett. 113, 217203 (2014)

    Article  ADS  Google Scholar 

  10. L. Xu, S. Yuan, H. Zeng, J. Song, A comprehensive review of doping in perovskite nanocrystals/quantum dots: evolution of structure, electronics, optics, and light-emitting diodes. Materials Today Nano. 6, 100036 (2019)

    Article  Google Scholar 

  11. F. Li, Z. Xia, Y. Gong, L. Gu, Q. Liu, Optical properties of Mn2+ doped cesium lead halide perovskite nanocrystals via a cation–anion co-substitution exchange reaction. J. Mater. Chem. C 5, 9281 (2017)

    Article  Google Scholar 

  12. S. Huang, Z. Xia, F. Yang, X. Zhang, Y. Song, D. Jiang, H. Deng, Z. Zeng, H. Niu, C. Cheng, Z. Ouyang, J. Wang, Z. Tian, Modulation of Jahn-Teller Mn3+ ion on anisotropy and high field magnetic diagram of Sm(Fe, Mn)O3. J. Magn. Magn. Mater. 510, 166934 (2020)

    Article  Google Scholar 

  13. J. Liu, M. Niu, L. Wang, Structure, ferroelectric and magnetic characteristics of SmFeO3 and BaTiO3 co-modified BiFeO3 ceramics. J. Mater. Sci: Mater. Electron. 31, 3479–3491 (2020)

    Google Scholar 

  14. Q. Hu, B. Yue, D. Yang, Z. Zhang, Y. Wang, J. Liu, Electrochemical and magnetic properties of electrospun SmFeO3 and SmCoO3 nanofibers. J. Am. Ceram. Soc. 105, 1–10 (2021)

  15. A. Ali Khan, A. Ahlawat, P. Deshmukh, R.K. Sharma, VelagaSrihari, R. Singh, R. Vaish, A.K. Karnal, S. Satapathy, Effect of AFM and FM exchange interaction on magnetic anisotropy properties of single domain SmFeO3 at nanoscale. J. Magn. Magn. Mater. 502, 166505 (2020)

  16. J.-W. Zhu, X.-X. Wang, C. Song, Qi. Liu, J.-X. Sui, H.-D. Zhang, Y.-Z. Long, Magnetic anisotropy and magnetization enhancement of Gd3+-doped SmFeO3. J. Magn. Magn. Mater. 476, 568–573 (2019)

    Article  ADS  Google Scholar 

  17. A. Sasmal, S. Sen, P.S. Devi, Synthesis and characterization of SmFeO3 and its effect on the electrical and energy storage properties of PVDF. Mater. Res. Bull. 130, 110941 (2020)

    Article  Google Scholar 

  18. I.H. Lone, J. Aslam, N.R.E. Radwan et al., Multiferroic ABO3 transition metal oxides: a rare interaction of ferroelectricity and magnetism. Nanoscale. Res. Lett. 14, 142 (2019)

    Article  ADS  Google Scholar 

  19. L. Li, X. Wang, Y. Zhang, Enhanced visible light-responsive photocatalytic activity of LnFeO3 (Ln = La, Sm) nanoparticles by synergistic catalysis. Mater. Res. Bull. 50, 18–22 (2014)

  20. R. Maity, A.P. Sakhya, A. Dutta, T.P. Sinha, Investigation of concentration dependent electrical and photocatalytic properties of Mn doped SmFeO3. Mater. Chem. Phys. 223, 78–87 (2019)

    Article  Google Scholar 

  21. Z. Wang, Y. Huang, C.T. Liu, J. Li, J. Wang, Atomic packing and size effect on the Hume-Rothery rule. Intermetallics. 109, 139–144 (2019)

  22. S. Cao, H. Zhao, B. Kang, J. Zhang, W. Ren, Temperature induced spin switching in SmFeO3 single crystal. Sci. Rep. 4, 5960 (2014)

    Article  ADS  Google Scholar 

  23. X. Fu, X. Zeng, D. Wang et al., Ultralow temperature terahertz magnetic thermodynamics of perovskite-like SmFeO3 ceramic. Sci. Rep. 5, 14777 (2015)

    Article  ADS  Google Scholar 

  24. T. Roisnel, J. Rodrguez-Carvajal, WinPLOTR: a Windows tool for powder diffraction pattern analysis. Mater. Sci. Forum. 378, 118 (2001)

    Article  Google Scholar 

  25. W. Li, H. Shen, J. Xu, Manganese substitution effects in SmFeO3 nanoparticles fabricated by self-ignited sol–gel process. J. Sol-Gel. Sci. Technol. 76, 637–643 (2015)

    Article  Google Scholar 

  26. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status. Solidi. B. 15, 627–637 (1966)

    Article  ADS  Google Scholar 

Download references


We thank Central Instrumental Facility (CIF), IIT (BHU), Varanasi, for granting the basic characterization facilities. We also acknowledge Integral University, Lucknow, for facilitating the research opportunities as well as for assigning the manuscript communication number IU/R&D/2022-MCN0001659.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Abhishek Kumar Singh.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Babu, S., Srivastava, S. et al. Structural and Optical Properties of SmFe0.8Mn0.2O3 Nanocrystallites. Braz J Phys 53, 30 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: