Skip to main content
Log in

Investigation of Effects of Pairing Correlations on Calculated \(\beta\)-Decay Half-lives of fp-Shell Nuclei

  • Nuclear Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Pairing of nucleons plays a key role in solution to various nuclear physics problems. We investigate the probable effects of pairing correlations on the calculated Gamow-Teller (GT) strength distributions and the associated \(\beta\)-decay half-lives. Computations are performed for a total of 35 fp-shell nuclei using the proton-neutron quasiparticle random phase approximation (pn-QRPA) model. The nuclei were selected because of their importance in various astrophysical environments. Pairing gaps are one of the key parameters in the pn-QRPA model to compute GT transitions. We employed three different values of the pairing gaps obtained from three different empirical formulae in our calculation. The GT strength distributions changed significantly as the pairing gap values changed. This in turn resulted in contrasting centroid and total strength values of the calculated GT distributions and led to differences in calculated half-lives using the three schemes. The half-life values computed via the three-term pairing formula, based on separation energies of nucleons, were in best agreement with the measured data. We conclude that the traditional choice of pairing gap values, \(\Delta _p=\Delta _n={12/\sqrt{A}}\), may not lead to half-life values in good agreement with measured data. The findings of this study are interesting but warrant further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H.A. Bethe, G.E. Brown, J. Applegate, J.M. Lattimer, Nucl. Phys. A 234, 487 (1979)

    Article  ADS  Google Scholar 

  2. G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. Suppl. Ser. 42, 447 (1980)

    Article  ADS  Google Scholar 

  3. G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. 252, 715 (1982)

    Article  ADS  Google Scholar 

  4. K. Langanke, G. Martínez-Pinedo, Rev. Mod. Phys. 75, 819 (2003)

    Article  ADS  Google Scholar 

  5. F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992)

    Article  ADS  Google Scholar 

  6. K. Takahashi, M. Yamada, T. Kondoh, At. Data Nucl. Data Tables 12, 101 (1973)

    Article  ADS  Google Scholar 

  7. J.-U. Nabi, H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 71, 149–345 (1999)

    Article  ADS  Google Scholar 

  8. M. Hirsch, A. Staudt, K. Muto, H.V. Klapdor-kleingrothaus, At. Data Nucl. Data Tables 53, 165–193 (1993)

    Article  ADS  Google Scholar 

  9. G. Martinez-Pinedo, K. Langanke, Phys. Rev. Lett. 83, 4502 (1999)

    Article  ADS  Google Scholar 

  10. W. Tan, D. Ni, Z. Ren., Chin. Phys. C. 41, 054103 (2017)

  11. D. Brink, Rep. Prog. Phys. 21, 144 (1958)

    Article  ADS  Google Scholar 

  12. Z. Wang, Y. Niu, Z. Niu, J. Guo, J. Phys. G: Nucl. Part. Phys. 43, 045108 (2016)

  13. A. Staudt, E. Bender, K. Muto, H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 44, 79–132 (1990)

    Article  ADS  Google Scholar 

  14. J.-U. Nabi, A. Ullah, M. Tahir, New Astronomy 94, 101781 (2022)

    Article  Google Scholar 

  15. J.-U. Nabi, A. Ullah, A.A. Khan, Astrophys. J. 911, 93 (2021)

    Article  ADS  Google Scholar 

  16. F.G. Kondev, M. Wang, W.J. Huang, S. Naimi, G. Audi, Chin. Phys. C 45, 030001 (2021)

    Article  ADS  Google Scholar 

  17. S.G. Nilsson, Mat. Fys. Medd. Dan. Vid. Selsk 29, 16 (1955)

    Google Scholar 

  18. J. Blomqvist, A. Molinari, Nucl. Phys. A 106, 545 (1968)

    Article  ADS  Google Scholar 

  19. I. Ragnarsson, R.K. Sheline, Phys. Scripta 29, 385 (1984)

    Article  ADS  Google Scholar 

  20. P. Moller, A.J. Sierk, T. Ichikawa, H. Sagawa, At. Data and Nucl. Data Tables 109, 1–204 (2016)

    Article  ADS  Google Scholar 

  21. H. Homma, E. Bender, M. Hirsch, K. Muto, H.V. Klapdor-Kleingrothaus, T. Oda, Phys. Rev. C 54, 2972 (1996)

    Article  ADS  Google Scholar 

  22. K. Ikeda, S. Fujii, J.I. Fujita, Phys. Lett. 3, 271 (1963)

    Article  ADS  Google Scholar 

  23. E. Warburton, I. Towner, B. Brown, Phys. Rev. C 49, 824 (1994)

    Article  ADS  Google Scholar 

  24. M. Wang, W. Huang, F. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021)

    Article  ADS  Google Scholar 

  25. T. Adachi, Y. Fujita et al., Nucl. Phys. A 788, 70 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.-U. Nabi would like to acknowledge the support of the Higher Education Commission Pakistan through project 20-15394/NRPU/R &D/HEC/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Ullah.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, A., Nabi, JU. & Tahir, M. Investigation of Effects of Pairing Correlations on Calculated \(\beta\)-Decay Half-lives of fp-Shell Nuclei. Braz J Phys 53, 39 (2023). https://doi.org/10.1007/s13538-022-01236-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01236-y

Keywords

Navigation