Skip to main content
Log in

Study of Nuclear Structure of Neutron-Rich Even-Even Tungsten Nuclei Within Theoretical Framework

  • Nuclear Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present work, the intrinsic nuclear structures of the 180–190W isotopes have been systematically investigated by employing the triaxial projected shell model within the deformed basis. The diagonalization of model Hamiltonian gives rise to yrast spectra, γ- and 2γ-bands which successfully describe the intrinsic band structure of these tungsten isotopes. In addition, the role of the i13/2 neutron orbitals of the intruder major shell N = 6 in explaining nuclear structure properties is also highlighted. Further, other nuclear structure properties like back-bending in moment of inertia, interband and intraband transition probabilities, wave-functions, nuclear g-factors, etc. have also been calculated and are compared with the known experimental data to get an in-depth understanding of the intrinsic nuclear structure of 180–190W isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Bohr, B.R. Mottelson, Nuclear structure, vol. 1 (Benjamin, New York, 1969)

    MATH  Google Scholar 

  2. A. Bohr, B.R. Mottelson, Nuclear structure, vol. 2 (Benjamin, New York, 1975)

    MATH  Google Scholar 

  3. W. Nazarewicz, M.A. Riley, J.D. Garrett, Nucl. Phys. A. 512, 61 (1990)

    Article  ADS  Google Scholar 

  4. G. Herzberg, Molecular spectra and molecular structure, vol. 2 (Van Nostrand, New York, 1945)

    Google Scholar 

  5. D.R. Bès, Nucl. Phys. 49, 544 (1963)

    Article  Google Scholar 

  6. D.R. Bès, C. Yi-Chung, Nucl. Phys. 86, 581 (1966)

    Article  Google Scholar 

  7. R.F. Casten et al., Phys. Lett. B. 40, 333 (1972)

    Article  ADS  Google Scholar 

  8. I. Ragnarsson, R.A. Broglia, Nucl. Phys. A. 263, 315 (1976)

    Article  ADS  Google Scholar 

  9. Tu. Ya et al., Nucl. Phys. A. 848, 260 (2010)

    Article  ADS  Google Scholar 

  10. Z.C. Gao, Y.S. Chen, Y. Sun, Phys. Lett. B. 634, 195 (2006)

    Article  ADS  Google Scholar 

  11. L. Wilets, M. Jean, Phys. Rev. 102, 788 (1956)

    Article  ADS  Google Scholar 

  12. A.S. Davydov, G.F. Filippov, Nucl. Phys. 8, 237 (1958)

    Article  Google Scholar 

  13. A.S. Davydov, A.A. Chaban, Nucl. Phys. 20, 499 (1960)

    Article  Google Scholar 

  14. L.M. Robledo, R. Rodríguez-Guzmán, P. Sarriguren, J. Phys. G 36, 11 (2009)

    Article  Google Scholar 

  15. K. Nomura et al., Phys. Rev. C. 83, 054303 (2011)

    Article  ADS  Google Scholar 

  16. J.A. Sheikh, G.H. Bhat, Y. Sun, G.B. Vakil, R. Palit, Phys. Rev. C. 77, 034313 (2008)

    Article  ADS  Google Scholar 

  17. S. Jehangir et al., Phys. Rev. C. 97, 014310 (2018)

    Article  ADS  Google Scholar 

  18. J.A. Sheikh et al., Phys. Rev. C. 84, 054314 (2011)

    Article  ADS  Google Scholar 

  19. J.A. Sheikh, K. Hara, Phys. Rev. Lett. 82, 3968 (1999)

    Article  ADS  Google Scholar 

  20. Y. Sun et al., Phys. Rev. C. 61, 064323 (2000)

    Article  ADS  Google Scholar 

  21. P. Ring, P. Schuck, The nuclear many-body problem (Springer, New York, 1980)

    Book  Google Scholar 

  22. K. Hara, S. Iwasaki, Nucl. Phys. A. 332, 61 (1979)

    Article  ADS  Google Scholar 

  23. K. Hara, S. Iwasaki, Nucl. Phys. A. 348, 200 (1980)

    Article  ADS  Google Scholar 

  24. K. Hara, Y. Sun, Int. J. Mod. Phys. E. 4, 637 (1995)

    Article  ADS  Google Scholar 

  25. T. Bengtsson, I. Ragnarsson, Nucl. Phys. A. 436, 14 (1985)

    Article  ADS  Google Scholar 

  26. S.C. Wu, H. Niu, Nucl. Data. Sheets. 100, 483 (2003)

    Article  ADS  Google Scholar 

  27. B. Singh, J.C. Roediger, Nucl. Data. Sheets. 111, 2081 (2010)

    Article  ADS  Google Scholar 

  28. C.M. Baglin, Nucl. Data. Sheets. 111, 275 (2010)

    Article  ADS  Google Scholar 

  29. C.M. Baglin, Nucl. Data. Sheets. 99, 1 (2003)

    Article  ADS  Google Scholar 

  30. F.G. Kondev, S. Juutinen, D.J. Hartley, Nucl. Data. Sheets. 150, 1 (2018)

    Article  ADS  Google Scholar 

  31. N. Alkhomashi et al., Phys. Rev. C. 80, 064308 (2009)

    Article  ADS  Google Scholar 

  32. B.R. Mottelson, J.G. Valatin, Phys. Rev. Lett. 5, 11 (1960)

    Article  ADS  Google Scholar 

  33. F.S. Stephens, R.S. Simon, Nucl. Phys. A. 183, 257 (1971)

    Article  ADS  Google Scholar 

  34. F.S. Stephens, Rev. Mod. Phys. 47, 43 (1975)

    Article  ADS  Google Scholar 

  35. C.S. Purry et al., Nucl. Phys. A. 632, 229 (1998)

    Article  ADS  Google Scholar 

  36. J.Y. Zeng, Y.A. Lei, T.H. Jin, Z.J. Zhao, Phys. Rev. C. 50, 746 (1994)

    Article  ADS  Google Scholar 

  37. L. Grodzins, Phys. Lett. 2, 88 (1962)

    Article  ADS  Google Scholar 

  38. R.F. Casten, Nuclear structure from simple perspective (Oxford University Press, Oxford, 2000), p. 240

    Google Scholar 

  39. Y. Sun, J.L. Egido, Nucl. Phys. A. 580, 1 (1994)

    Article  ADS  Google Scholar 

  40. A. Mahdi, F.H. Al-Khudair, A.R.H. Subber, Int. J. Phys. Res. 4, 1 (2014)

    Google Scholar 

  41. S.G. Nilsson, O. Prior, Mat. Fys. Medd. Dan. Vid. Selsk. 32, 16 (1961)

    Google Scholar 

  42. N.J. Stone, At. Data. Nucl. Data. Tables. 90, 136 (2005)

    Article  Google Scholar 

  43. R.B. Cakirli, D.S. Brenner, R.F. Casten, E.A. Millman, Phys. Rev. Lett. 94, 092501 (2005)

    Article  ADS  Google Scholar 

  44. J.Y. Zhang, R.F. Casten, D.S. Brenner, Phys. Lett. B. 227, 1 (1989)

    Article  ADS  Google Scholar 

  45. J.Y. Zhang et al., Phys. Rev. C. 73, 037301 (2006)

    Article  ADS  Google Scholar 

  46. M.A. Al-Ammeer, M.A. Hussein, J. Babylon. Univ. 21, 3 (2013)

    Google Scholar 

Download references

Funding

Arun Bharti is financially supported by the Science and Engineering Research Board (SERB), Government of India, under the project file no. CRG/2019/001231. Rajat Gupta is financially supported by the University Grants Commission (UGC), Government of India, under the UGC-CSIR NET-JRF Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Bharti.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Bakshi, R., Kumar, A. et al. Study of Nuclear Structure of Neutron-Rich Even-Even Tungsten Nuclei Within Theoretical Framework. Braz J Phys 52, 174 (2022). https://doi.org/10.1007/s13538-022-01173-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01173-w

Keywords

Navigation